
Chapter 7

Cycles II: The Wold Representation

and Its Approximation

This Chapter is a bit more abstract than most, but don’t be put off. On the

contrary, you may want to read it several times. The material in it is crucially

important for time series modeling and forecasting and is therefore central to

our concerns. In some parts (finite-ordered autoregressive models) it largely

repeats Chapter 6, but that’s intentional. It treats much more, including

the Wold representation and its approximation and prediction using finite-

ordered autoregressions, finite-ordered moving averages, and finite-ordered

ARMA processes. Hence even the overlapping material is presented and

integrated from a significantly more sohpisticated perspective.

7.1 The Wold Representation and the General Linear

Process

7.1.1 The Wold Representation

Many different dynamic patterns are consistent with covariance stationarity.

Thus, if we know only that a series is covariance stationary, it’s not at all

clear what sort of model we might fit to describe its evolution. The trend and

seasonal models that we’ve studied aren’t of use; they’re models of specific
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nonstationary components. Effectively, what we need now is an appropriate

model for what’s left after fitting the trend and seasonal components – a

model for a covariance stationary residual. Wold’s representation theo-

rem points to the appropriate model.

Theorem:

Let {yt} be any zero-mean covariance-stationary process.1 Then we can

write it as

yt = B(L)εt =
∞∑
i=0

biεt−i

εt ∼ WN(0, σ2),

where

b0 = 1
∞∑
i=0

b2
i < ∞.

In short, the correct “model” for any covariance stationary series is some

infinite distributed lag of white noise, called the Wold representation. The

ε′ts are often called innovations, because (as we’ll see) they correspond to the

1-step-ahead forecast errors that we’d make if we were to use a particularly

good forecast. That is, the ε′ts represent that part of the evolution of y that’s

linearly unpredictable on the basis of the past of y. Note also that the ε′ts,

although uncorrelated, are not necessarily independent. Again, it’s only for

Gaussian random variables that lack of correlation implies independence, and

the innovations are not necessarily Gaussian.

In our statement of Wold’s theorem we assumed a zero mean. That may

seem restrictive, but it’s not. Rather, whenever you see yt, just read (yt−µ),

so that the process is expressed in deviations from its mean. The deviation

from the mean has a zero mean, by construction. Working with zero-mean

1Moreover, we require that the covariance stationary processes not contain any deterministic components.
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processes therefore involves no loss of generality while facilitating notational

economy. We’ll use this device frequently.

7.1.2 The General Linear Process

Wold’s theorem tells us that when formulating forecasting models for covari-

ance stationary time series we need only consider models of the form

yt = B(L)εt =
∞∑
i=0

biεt−i

εt ∼ WN(0, σ2),

where the bi are coefficients with b0 = 1 and
∑∞

i=0 b
2
i <∞.

We call this the general linear process, “general” because any covari-

ance stationary series can be written that way, and “linear” because the Wold

representation expresses the series as a linear function of its innovations.

The general linear process is so important that it’s worth examining its un-

conditional and conditional moment structure in some detail. Taking means

and variances, we obtain the unconditional moments

E(yt) = E(
∞∑
i=0

biεt−i) =
∞∑
i=0

biEεt−i =
∞∑
i=0

bi · 0 = 0

and

var(yt) = var(
∞∑
i=0

biεt−i) =
∞∑
i=0

b2
i var(εt−i) =

∞∑
i=0

b2
iσ

2 = σ2
∞∑
i=0

b2
i .

At this point, in parallel to our discussion of white noise, we could compute

and examine the autocovariance and autocorrelation functions of the general

linear process. Those calculations, however, are rather involved, and not

particularly revealing, so we’ll proceed instead to examine the conditional

mean and variance, where the information set Ωt−1 upon which we condition
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contains past innovations; that is,

Ωt−1 = εt−1, εt−2, ....

In this manner we can see how dynamics are modeled via conditional mo-

ments.2 The conditional mean is

E(yt|Ωt−1) = E(εt|Ωt−1) + b1E(εt−1|Ωt−1) + b2E(εt−2|Ωt−1) + ...

= 0 + b1εt−1 + b2εt−2 + ... =
∞∑
i=1

biεt−i,

and the conditional variance is

var(yt|Ωt−1) = Eyt − E(yt|Ωt−1))
2|Ωt−1] = E(ε2

t |Ωt−1) = E(ε2
t ) = σ2.

The key insight is that the conditional mean moves over time in response

to the evolving information set. The model captures the dynamics of the

process, and the evolving conditional mean is one crucial way of summarizing

them. An important goal of time series modeling, especially for forecasters,

is capturing such conditional mean dynamics – the unconditional mean is

constant (a requirement of stationarity), but the conditional mean varies in

response to the evolving information set.3

7.2 Approximating the Wold Representation

When building forecasting models, we don’t want to pretend that the model

we fit is true. Instead, we want to be aware that we’re approximating a

2Although Wold’s theorem guarantees only serially uncorrelated white noise innovations, we shall some-
times make a stronger assumption of independent white noise innovations in order to focus the discussion.
We do so, for example, in the following characterization of the conditional moment structure of the general
linear process.

3Note, however, an embarrassing asymmetry: the conditional variance, like the unconditional variance,
is a fixed constant. However, models that allow the conditional variance to change with the information set
have been developed recently, as discussed in detail in Chapter ??.
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more complex reality. That’s the modern view, and it has important impli-

cations for forecasting. In particular, we’ve seen that the key to successful

time series modeling and forecasting is parsimonious, yet accurate, approxi-

mation of the Wold representation. Here we consider three approximations:

moving average (MA) models, autoregressive (AR) models, and au-

toregressive moving average (ARMA) models. The three models differ

in their specifics and have different strengths in capturing different sorts of

autocorrelation behavior.

We begin by characterizing the autocorrelation functions and related quan-

tities associated with each model, under the assumption that the model is

“true.” We do this separately for autoregressive, moving average, and ARMA

models.4 These characterizations have nothing to do with data or estimation,

but they’re crucial for developing a basic understanding of the properties of

the models, which is necessary to perform intelligent modeling and forecast-

ing. They enable us to make statements such as “If the data were really

generated by an autoregressive process, then we’d expect its autocorrelation

function to have property x.” Armed with that knowledge, we use the sam-

ple autocorrelations and partial autocorrelations, in conjunction with the

AIC and the SIC, to suggest candidate forecasting models, which we then

estimate.

7.2.1 Rational Distributed Lags

As we’ve seen, the Wold representation points to the crucial importance of

models with infinite distributed lags. Infinite distributed lag models, in turn,

are stated in terms of infinite polynomials in the lag operator, which are

therefore very important as well. Infinite distributed lag models are not of

immediate practical use, however, because they contain infinitely many pa-

4Sometimes, especially when characterizing population properties under the assumption that the models
are correct, we refer to them as processes, which is short for stochastic processes. Hence the terms moving
average process, autoregressive process, and ARMA process.
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rameters, which certainly inhibits practical application! Fortunately, infinite

polynomials in the lag operator needn’t contain infinitely many free parame-

ters. The infinite polynomial B(L) may for example be a ratio of finite-order

(and perhaps very low-order) polynomials. Such polynomials are called ra-

tional polynomials, and distributed lags constructed from them are called

rational distributed lags.

Suppose, for example, that

B(L) =
Θ (L)

Φ (L)
,

where the numerator polynomial is of degree q,

Θ(L) =

q∑
i=0

θiL
i,

and the denominator polynomial is of degree p,

Φ(L) =

p∑
i=0

φiL
i.

There are not infinitely many free parameters in the B(L) polynomial;

instead, there are only p + q parameters (the θ’s and the φ’s). If p and q

are small, say 0, 1 or 2, then what seems like a hopeless task – estimation of

B(L) – may actually be easy.

More realistically, suppose that B(L) is not exactly rational, but is approxi-

mately rational,

B(L) ≈ Θ(L)

Φ(L)
,

Then we can approximate the Wold representation using a rational dis-

tributed lag. Rational distributed lags produce models of cycles that econ-

omize on parameters (they’re parsimonious), while nevertheless providing

accurate approximations to the Wold representation. The popular ARMA
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and ARIMA forecasting models, which we’ll introduce shortly, are simply

rational approximations to the Wold representation.

7.2.2 Moving Average (MA) Models

The finite-order moving average processes is a natural and obvious approxi-

mation to the Wold representation, which is an infinite-order moving average

process. Finite-order moving average processes also have direct motivation:

the fact that all variation in time series, one way or another, is driven by

shocks of various sorts suggests the possibility of modeling time series directly

as distributed lags of current and past shocks, that is, as moving average pro-

cesses.5

The MA(1) Process

The first-order moving average, or MA(1), process is

yt = εt + θεt−1 = (1 + θL)εt

εt ∼ WN(0, σ2).

The defining characteristic of the MA process in general, and the MA(1)

in particular, is that the current value of the observed series is expressed

as a function of current and lagged unobservable shocks – think of it as a

regression model with nothing but current and lagged disturbances on the

right-hand side.

To help develop a feel for the behavior of the MA(1) process, we show two

simulated realizations of length 150 in Figure 7.1. The processes are

yt = εt + .4εt−1

5Economic equilibria, for example, may be disturbed by shocks that take some time to be fully assimilated.
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Figure 7.1: Realizations of Two MA(1) Processes

and

yt = εt + .95εt−1,

where in each case

εt ∼ iid N(0, 1).

To construct the realizations, we used the same series of underlying white

noise shocks; the only difference in the realizations comes from the different

coefficients. Past shocks feed positively into the current value of the series,

with a small weight of θ=.4 in one case and a large weight of θ=.95 in the

other. You might think that θ=.95 would induce much more persistence than

θ=.4, but it doesn’t. The structure of the MA(1) process, in which only the

first lag of the shock appears on the right, forces it to have a very short

memory, and hence weak dynamics, regardless of the parameter value.

The unconditional mean and variance are

Eyt = E(εt) + θE(εt−1) = 0
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and

var(yt) = var(εt) + θ2var(εt−1) = σ2 + θ2σ2 = σ2(1 + θ2).

Note that for a fixed value of σ, as θ increases in absolute value so too does

the unconditional variance. That’s why the MA(1) process with parameter

θ=.95 varies a bit more than the process with a parameter of θ=.4.

The conditional mean and variance of an MA(1), where the conditioning

information set is

Ωt−1 = εt−1, εt−2, ...,

are

E(yt|Ωt−1) = E(εt + θεt−1|Ωt−1) = E(εt|Ωt−1) + θE(εt−1|Ωt−1) = θεt−1

and

var(yt|Ωt−1) = Eyt − E(yt|Ωt−1))
2|Ωt−1] = E(ε2

t |Ωt−1) = E(ε2
t ) = σ2.

The conditional mean explicitly adapts to the information set, in contrast to

the unconditional mean, which is constant. Note, however, that only the first

lag of the shock enters the conditional mean – more distant shocks have no

effect on the current conditional expectation. This is indicative of the one-

period memory of MA(1) processes, which we’ll now characterize in terms of

the autocorrelation function.

To compute the autocorrelation function for the MA(1) process, we must

first compute the autocovariance function. We have

γ(τ) = E(ytyt−τ) = E((εt + θεt−1)(εt−τ + θεt−τ−1)) =

θσ2, τ = 1

0, otherwise.

.

(The proof is left as a problem.) The autocorrelation function is just the
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Figure 7.2: MA(1) Population Autocorrelation Function - θ = .4

autocovariance function scaled by the variance,

ρ(τ) =
γ(τ)

γ(0)
=

θ
1+θ2 , τ = 1

0, otherwise.

.

The key feature here is the sharp cutoff in the autocorrelations. All autocor-

relations are zero beyond displacement 1, the order of the MA process. In

Figures 7.2 and 7.3, we show the autocorrelation functions for our two MA(1)

processes with parameters θ=.4 and θ=.95. At displacement 1, the process

with parameter θ=.4 has a smaller autocorrelation (.34) than the process

with parameter θ=.95, (.50) but both drop to zero beyond displacement 1.

Note that the requirements of covariance stationarity (constant uncondi-

tional mean, constant and finite unconditional variance, autocorrelation de-

pends only on displacement) are met for any MA(1) process, regardless of the

values of its parameters. If, moreover, |θ| < 1 , then we say that the MA(1)

process is invertible. In that case, we can “invert” the MA(1) process and

express the current value of the series not in terms of a current shock and a



7.2. APPROXIMATING THE WOLD REPRESENTATION 209

Figure 7.3: MA(1) Population Autocorrelation Function - θ = .95

lagged shock, but rather in terms of a current shock and lagged values of the

series. That’s called an autoregressive representation. An autoregressive

representation has a current shock and lagged observable values of the series

on the right, whereas a moving average representation has a current shock

and lagged unobservable shocks on the right.

Let’s compute the autoregressive representation. The process is

yt = εt + θεt−1

εt ∼ WN(0, σ2).

Thus we can solve for the innovation as

εt = yt − θεt−1.

Lagging by successively more periods gives expressions for the innovations at

various dates,

εt−1 = yt−1 − θεt−2
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εt−2 = yt−2 − θεt−3

εt−3 = yt−3 − θεt−4,

and so forth. Making use of these expressions for lagged innovations we can

substitute backward in the MA(1) process, yielding

yt = εt + θyt−1 − θ2yt−2 + θ3yt−3 − ...

In lag-operator notation, we write the infinite autoregressive representation

as
1

1 + θL
yt = εt.

Note that the back substitution used to obtain the autoregressive representa-

tion only makes sense, and in fact a convergent autoregressive representation

only exists, if |θ| < 1 , because in the back substitution we raise θ to progres-

sively higher powers.

We can restate the invertibility condition in another way: the inverse of

the root of the moving average lag operator polynomial (1 + θL) must be

less than one in absolute value. Recall that a polynomial of degree m has m

roots. Thus the MA(1) lag operator polynomial has one root, which is the

solution to

1 + θL = 0.

The root is L=-1/θ, so its inverse will be less than one in absolute value if

|θ| < 1 , and the two invertibility conditions are equivalent. The “inverse

root” way of stating invertibility conditions seems tedious, but it turns out

to be of greater applicability than the |θ| < 1 condition, as we’ll see shortly.

Autoregressive representations are appealing to forecasters, because one

way or another, if a model is to be used for real-world forecasting, it’s got

to link the present observables to the past history of observables, so that

we can extrapolate to form a forecast of future observables based on present
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and past observables. Superficially, moving average models don’t seem to

meet that requirement, because the current value of a series is expressed in

terms of current and lagged unobservable shocks, not observable variables.

But under the invertibility conditions that we’ve described, moving average

processes have equivalent autoregressive representations. Thus, although we

want autoregressive representations for forecasting, we don’t have to start

with an autoregressive model. However, we typically restrict ourselves to

invertible processes, because for forecasting purposes we want to be able to

express current observables as functions of past observables.

Finally, let’s consider the partial autocorrelation function for the MA(1)

process. From the infinite autoregressive representation of the MA(1) process,

we see that the partial autocorrelation function will decay gradually to zero.

As we discussed earlier, the partial autocorrelations are just the coefficients on

the last included lag in a sequence of progressively higher-order autoregressive

approximations. If θ > 0, then the pattern of decay will be one of damped

oscillation; otherwise, the decay will be one-sided.

In Figures 7.4 and 7.5 we show the partial autocorrelation functions for

our example MA(1) processes. For each process, |θ| < 1 , so that an au-

toregressive representation exists, and θ > 0, so that the coefficients in the

autoregressive representations alternate in sign. Specifically, we showed the

general autoregressive representation to be

yt = εt + θyt−1 − θ2yt−2 + θ3yt−3 − ...,

so the autoregressive representation for the process with θ=.4 is

yt = εt + .4yt−1 − .42yt−2 + ... = εt + .4yt−1 − .16yt−2 + ...,

and the autoregressive representation for the process with θ=.95 is

yt = εt + .95yt−1 − .952yt−2 + ... = εt + .95yt−1 − .9025yt−2 + ...
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Figure 7.4: MA(1) Population Partial Autocorrelation Function - θ = .4

The partial autocorrelations display a similar damped oscillation.6 The decay,

however, is slower for the θ=.95 case.

Figure 7.5: MA(1) Population Partial Autocorrelation Function - θ = .95

6Note, however, that the partial autocorrelations are not the successive coefficients in the infinite autore-
gressive representation. Rather, they are the coefficients on the last included lag in sequence of progressively
longer autoregressions. The two are related but distinct.
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The MA(q) Process

Now consider the general finite-order moving average process of order q, or

MA(q) for short,

yt = εt + θ1εt−1 + ...+ θqεt−q = Θ(L)εt

εt ∼ WN(0, σ2),

where

Θ(L) = 1 + θ1L+ ...+ θqL
q

is a qth-order lag operator polynomial. The MA(q) process is a natural

generalization of the MA(1). By allowing for more lags of the shock on the

right side of the equation, the MA(q) process can capture richer dynamic

patterns, which we can potentially exploit for improved forecasting. The

MA(1) process is of course a special case of the MA(q), corresponding to

q = 1.

The properties of the MA(q) processes parallel those of the MA(1) process

in all respects, so in what follows we’ll refrain from grinding through the

mathematical derivations. Instead we’ll focus on the key features of practical

importance. Just as the MA(1) process was covariance stationary for any

value of its parameters, so too is the finite-order MA(q) process. As with

the MA(1) process, the MA(q) process is invertible only if a root condition

is satisfied. The MA(q) lag operator polynomial has q roots; when q > 1

the possibility of complex roots arises. The condition for invertibility of the

MA(q) process is that the inverses of all of the roots must be inside the unit

circle, in which case we have the convergent autoregressive representation,

1

Θ(L)
yt = εt.

The conditional mean of the MA(q) process evolves with the information
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set, in contrast to the unconditional moments, which are fixed. In contrast

to the MA(1) case, in which the conditional mean depends on only the first

lag of the innovation, in the MA(q) case the conditional mean depends on q

lags of the innovation. Thus the MA(q) process has the potential for longer

memory.

The potentially longer memory of the MA(q) process emerges clearly in

its autocorrelation function. In the MA(1) case, all autocorrelations beyond

displacement 1 are zero; in the MA(q) case all autocorrelations beyond dis-

placement q are zero. This autocorrelation cutoff is a distinctive property of

moving average processes. The partial autocorrelation function of the MA(q)

process, in contrast, decays gradually, in accord with the infinite autoregres-

sive representation, in either an oscillating or one-sided fashion, depending

on the parameters of the process.

In closing this section, let’s step back for a moment and consider in greater

detail the precise way in which finite-order moving average processes approx-

imate the Wold representation. The Wold representation is

yt = B(L)εt,

where B(L) is of infinite order. The MA(1), in contrast, is simply a first-

order moving average, in which a series is expressed as a one-period moving

average of current and past innovations. Thus when we fit an MA(1) model

we’re using the first-order polynomial 1 + θL to approximate the infinite-

order polynomial B(L). Note that 1 + θL is a rational polynomial with nu-

merator polynomial of degree one and degenerate denominator polynomial

(degree zero).

MA(q) process have the potential to deliver better approximations to the

Wold representation, at the cost of more parameters to be estimated. The

Wold representation involves an infinite moving average; the MA(q) process
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approximates the infinite moving average with a finite-order moving average,

yt = Θ(L)εt,

whereas the MA(1) process approximates the infinite moving average with a

only a first-order moving average, which can sometimes be very restrictive.

Soon we shall see that MA processes are absolutely central for under-

standing forecasting and properties of forecast errors, even if they usually

not used directly as forecasting models. Other approximations to the Wold

representation are typically more useful for producing forecasts, in particu-

lar autoregressive (AR) and mixed autoregressive moving-average (ARMA)

models, to which we now turn.

7.2.3 Autoregressive (AR) Models

The autoregressive process is also a natural approximation to the Wold rep-

resentation. We’ve seen, in fact, that under certain conditions a moving

average process has an autoregressive representation, so an autoregressive

process is in a sense the same as a moving average process. Like the moving

average process, the autoregressive process has direct motivation; it’s simply

a stochastic difference equation, a simple mathematical model in which the

current value of a series is linearly related to its past values, plus an additive

stochastic shock. Stochastic difference equations are a natural vehicle for

discrete-time stochastic dynamic modeling.

The AR(1) Process

The first-order autoregressive process, AR(1) for short, is

yt = φyt−1 + εt
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Figure 7.6: Realization of Two AR(1) Processes

εt ∼ WN(0, σ2).

In lag operator form, we write

(1− φL)yt = εt.

In Figure 7.6 we show simulated realizations of length 150 of two AR(1)

processes; the first is

yt = .4yt−1 + εt,

and the second is

yt = .95yt−1 + εt,

where in each case

εt iid N(0, 1),

and the same innovation sequence underlies each realization.

The fluctuations in the AR(1) with parameter φ = .95 appear much more

persistent that those of the AR(1) with parameter φ = .4. This contrasts

sharply with the MA(1) process, which has a very short memory regardless
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of parameter value. Thus the AR(1) model is capable of capturing much

more persistent dynamics than is the MA(1).

Recall that a finite-order moving average process is always covariance sta-

tionary, but that certain conditions must be satisfied for invertibility, in which

case an autoregressive representation exists. For autoregressive processes, the

situation is precisely the reverse. Autoregressive processes are always invert-

ible – in fact invertibility isn’t even an issue, as finite-order autoregressive

processes already are in autoregressive form – but certain conditions must be

satisfied for an autoregressive process to be covariance stationary.

If we begin with the AR(1) process,

yt = φyt−1 + εt,

and substitute backward for lagged y’s on the right side, we obtain

yt = εt + φεt−1 + φ2εt−2 + ...

In lag operator form we write

yt =
1

1− φL
εt.

This moving average representation for y is convergent if and only if |φ| < 1

; thus, |φ| < 1 is the condition for covariance stationarity in the AR(1) case.

Equivalently, the condition for covariance stationarity is that the inverse of

the root of the autoregressive lag operator polynomial be less than one in

absolute value.

From the moving average representation of the covariance stationaryAR(1)



218CHAPTER 7. CYCLES II: THEWOLD REPRESENTATION AND ITS APPROXIMATION

process, we can compute the unconditional mean and variance,

E(yt) = E(εt + φεt−1 + φ2εt−2 + ...)

= E(εt) + φE(εt−1) + φ2E(εt−2) + ...

= 0

and
var(yt) = var(εt + φεt−1 + φ2εt−2 + ...)

= σ2 + φ2σ2 + φ4σ2 + ...

= σ2
∑∞

i=0 φ
2i

= σ2

1−φ2 .

The conditional moments, in contrast, are

E(yt|yt−1) = E(φyt−1 + εt|yt−1)

= φE(yt−1|yt−1) + E(εt|yt−1)

= φyt−1 + 0

= φyt−1
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and
var(yt|yt−1) = var((φyt−1 + εt) | yt−1)

= φ2var(yt−1|yt−1) + var(εt|yt−1)

= 0 + σ2

= σ2.

Note in particular that the simple way that the conditional mean adapts to

the changing information set as the process evolves.

To find the autocovariances, we proceed as follows. The process is

yt = φyt−1 + εt,

so that multiplying both sides of the equation by yt−τ we obtain

ytyt−τ = φyt−1yt−τ + εtyt−τ .

For τ ≥ 1, taking expectations of both sides gives

γ(τ) = φγ(τ − 1).

This is called the Yule-Walker equation. It is a recursive equation; that is,

given γ(τ), for any τ , the Yule-Walker equation immediately tells us how to

get γ(τ + 1). If we knew γ(0) to start things off (an “initial condition”), we

could use the Yule-Walker equation to determine the entire autocovariance

sequence. And we do know γ(0); it’s just the variance of the process, which

we already showed to be

γ(0) =
σ2

1− φ2
.
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Thus we have

γ(0) =
σ2

1− φ2

γ(1) = φ
σ2

1− φ2

γ(2) = φ2 σ2

1− φ2
,

and so on. In general, then,

γ(τ) = φτ
σ2

1− φ2
, τ = 0, 1, 2, ....

Dividing through by γ(0) gives the autocorrelations,

ρ(τ) = φτ , τ = 0, 1, 2, ....

Note the gradual autocorrelation decay, which is typical of autoregressive

processes. The autocorrelations approach zero, but only in the limit as the

displacement approaches infinity. In particular, they don’t cut off to zero,

as is the case for moving average processes. If φ is positive, the autocorre-

lation decay is one-sided. If φ is negative, the decay involves back-and-forth

oscillations. The relevant case in business and economics is φ > 0, but either

way, the autocorrelations damp gradually, not abruptly. In Figure 7.7 and

7.8 we show the autocorrelation functions for AR(1) processes with parame-

ters φ = .4 and φ = .95. The persistence is much stronger when φ = .95, in

contrast to the MA(1) case, in which the persistence was weak regardless of

the parameter.

Finally, the partial autocorrelation function for the AR(1) process cuts off

abruptly; specifically,

p(τ) =


φ, τ = 1

0, τ > 1.

.
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Figure 7.7: AR(1) Population Autocorrelation Function - ρ = .4

Figure 7.8: AR1) Population Autocorrelation Function - ρ = .95

It’s easy to see why. The partial autocorrelations are just the last coeffi-

cients in a sequence of successively longer population autoregressions. If the

true process is in fact an AR(1), the first partial autocorrelation is just the

autoregressive coefficient, and coefficients on all longer lags are zero.

In Figures 7.9 and 7.10 we show the partial autocorrelation functions for
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Figure 7.9: AR(1) Population Partial Autocorrelation Function - ρ = .4

our two AR(1) processes. At displacement 1, the partial autocorrelations are

simply the parameters of the process (.4 and .95, respectively), and at longer

displacements, the partial autocorrelations are zero.

The AR(p) Process

The general p-th order autoregressive process, or AR(p) for short, is

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

εt ∼ WN(0, σ2).

In lag operator form we write

Φ(L)yt = (1− φ1L− φ2L
2 − ...− φpLp) yt = εt.

As with our discussion of the MA(q) process, in our discussion of the AR(p)

process we dispense here with mathematical derivations and instead rely on

parallels with the AR(1) case to establish intuition for its key properties.
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Figure 7.10: AR1) Population Partial Autocorrelation Function - ρ = .95

An AR(p) process is covariance stationary if and only if the inverses of

all roots of the autoregressive lag operator polynomial Φ(L) are inside the

unit circle.7 In the covariance stationary case we can write the process in the

convergent infinite moving average form

yt =
1

Φ(L)
εt.

The autocorrelation function for the general AR(p) process, as with that of

the AR(1) process, decays gradually with displacement. Finally, the AR(p)

partial autocorrelation function has a sharp cutoff at displacement p, for

the same reason that the AR(1) partial autocorrelation function has a sharp

cutoff at displacement 1.

Let’s discuss the AR(p) autocorrelation function in a bit greater depth.

7A necessary condition for covariance stationarity, which is often useful as a quick check, is

p∑
i=1

φi < 1.

If the condition is satisfied, the process may or may not be stationary, but if the condition is violated, the
process can’t be stationary.
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The key insight is that, in spite of the fact that its qualitative behavior

(gradual damping) matches that of the AR(1) autocorrelation function, it

can nevertheless display a richer variety of patterns, depending on the order

and parameters of the process. It can, for example, have damped monotonic

decay, as in the AR(1) case with a positive coefficient, but it can also have

damped oscillation in ways that AR(1) can’t have. In the AR(1) case, the

only possible oscillation occurs when the coefficient is negative, in which case

the autocorrelations switch signs at each successively longer displacement. In

higher-order autoregressive models, however, the autocorrelations can oscil-

late with much richer patterns reminiscent of cycles in the more traditional

sense. This occurs when some roots of the autoregressive lag operator poly-

nomial are complex.8

Consider, for example, the AR(2) process,

yt = 1.5yt−1 − .9yt−2 + εt.

The corresponding lag operator polynomial is 1− 1.5L+ .9L2 , with two

complex conjugate roots, .83± .65i. The inverse roots are .75± .58i, both of

which are close to, but inside, the unit circle; thus the process is covariance

stationary. It can be shown that the autocorrelation function for an AR(2)

process is

ρ(0) = 1

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2), τ = 2, 3, ...

ρ(1) =
φ1

1− φ2

Using this formula, we can evaluate the autocorrelation function for the pro-

cess at hand; we plot it in Figure 7.11. Because the roots are complex, the

autocorrelation function oscillates, and because the roots are close to the unit

circle, the oscillation damps slowly.

8Note that complex roots can’t occur in the AR(1) case.
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Figure 7.11: Population Autocorrelation Function - AR(2) with Complex Roots

Finally, let’s step back once again to consider in greater detail the precise

way that finite-order autoregressive processes approximate the Wold repre-

sentation. As always, the Wold representation is yt = B(L)εt, where B(L) is

of infinite order. The AR(1), as compared to the MA(1), is simply a different

approximation to the Wold representation. The moving average representa-

tion associated with the AR(1) process is yt = 1/1− φLεt. Thus, when we fit

an AR(1) model, we’re using 1/1− φL, a rational polynomial with degenerate

numerator polynomial (degree zero) and denominator polynomial of degree

one, to approximate B(L). The moving average representation associated

with the AR(1) process is of infinite order, as is the Wold representation, but

it does not have infinitely many free coefficients. In fact, only one parameter,

φ, underlies it.

The AR(p) is an obvious generalization of the AR(1) strategy for ap-

proximating the Wold representation. The moving average representation

associated with the AR(p) process is yt = 1/Φ(L)εt. When we fit an AR(p)

model to approximate the Wold representation we’re still using a rational

polynomial with degenerate numerator polynomial (degree zero), but the de-



226CHAPTER 7. CYCLES II: THEWOLD REPRESENTATION AND ITS APPROXIMATION

nominator polynomial is of higher degree.

7.2.4 Autoregressive Moving Average (ARMA) Models

Autoregressive and moving average models are often combined in attempts

to obtain better and more parsimonious approximations to the Wold repre-

sentation, yielding the autoregressive moving average process, ARMA(p,q)

for short. As with moving average and autoregressive processes, ARMA pro-

cesses also have direct motivation.9 First, if the random shock that drives

an autoregressive process is itself a moving average process, then it can be

shown that we obtain an ARMA process. Second, ARMA processes can arise

from aggregation. For example, sums of AR processes, or sums of AR and

MA processes, can be shown to be ARMA processes. Finally, AR processes

observed subject to measurement error also turn out to be ARMA processes.

The simplest ARMA process that’s not a pure autoregression or pure mov-

ing average is the ARMA(1,1), given by

yt = φyt−1 + εt + θεt−1

εt ∼ WN(0, σ2),

or in lag operator form,

(1− φL) yt = (1 + θL) εt,

where |φ| < 1 is required for stationarity and |θ| < 1 is required for invert-

ibility.10 If the covariance stationarity condition is satisfied, then we have the

moving average representation

yt =
(1 + θL)

(1− φL)
εt,

9For more extensive discussion, see Granger and Newbold (1986).
10Both stationarity and invertibility need to be checked in the ARMA case, because both autoregressive

and moving average components are present.
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which is an infinite distributed lag of current and past innovations. Similarly,

if the invertibility condition is satisfied, then we have the infinite autoregres-

sive representation,
(1− φL)

(1 + θL)
yt = εt.

The ARMA(p,q) process is a natural generalization of the ARMA(1,1) that

allows for multiple moving average and autoregressive lags. We write

yt = φ1yt−1 + ...+ φpyt−p + εt + θ1εt−1 + ...+ θqεt−q

εt ∼ WN(0, σ2),

or

Φ(L)yt = Θ(L)εt,

where

Φ(L) = 1− φ1L− φ2L
2 − ...− φpLp

and

Θ(L) = 1 + θ1L+ θ2L
2 + ... + θqL

q.

If the inverses of all roots of Φ(L) are inside the unit circle, then the

process is covariance stationary and has convergent infinite moving average

representation

yt =
Θ(L)

Φ(L)
εt.

If the inverses of all roots of Θ(L) are inside the unit circle, then the process

is invertible and has convergent infinite autoregressive representation

Φ(L)

Θ(L)
yt = εt.

As with autoregressions and moving averages, ARMA processes have a fixed

unconditional mean but a time-varying conditional mean. In contrast to

pure moving average or pure autoregressive processes, however, neither the
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autocorrelation nor partial autocorrelation functions of ARMA processes cut

off at any particular displacement. Instead, each damps gradually, with the

precise pattern depending on the process.

ARMA models approximate the Wold representation by a ratio of two

finite-order lag-operator polynomials, neither of which is degenerate. Thus

ARMA models use ratios of full-fledged polynomials in the lag operator to

approximate the Wold representation,

yt =
Θ(L)

Φ(L)
εt.

ARMA models, by allowing for both moving average and autoregressive com-

ponents, often provide accurate approximations to the Wold representation

that nevertheless have just a few parameters. That is, ARMA models are of-

ten both highly accurate and highly parsimonious. In a particular situation,

for example, it might take an AR(5) to get the same approximation accuracy

as could be obtained with an ARMA(2,1), but the AR(5) has five parameters

to be estimated, whereas the ARMA(2,1) has only three.

7.3 Forecasting Cycles From a Moving-Average Per-

spective: Wiener-Kolmogorov

By now you’ve gotten comfortable with the idea of an information set.

Here we’ll use that idea extensively. We denote the time-T information set

by ΩT . As first pass it seems most natural to think of the information set as

containing the available past history of the series,

ΩT = {yT , yT−1, yT−2, ...},

where for theoretical purposes we imagine history as having begun in the

infinite past.
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So long as y is covariance stationary, however, we can just as easily express

the information available at time T in terms of current and past shocks,

ΩT = {εT , εT−1, εT−2, ...}.

Suppose, for example, that the process to be forecast is a covariance station-

ary AR(1),

yt = φyt−1 + εt.

Then immediately,

εT = yT − φyT−1

εT−1 = yT−1 − φyT−2

εT−2 = yT−2 − φyT−3,

and so on. In other words, we can figure out the current and lagged ε’s from

the current and lagged y’s. More generally, for any covariance stationary and

invertible series, we can infer the history of ε from the history of y, and the

history of y from the history of ε.

Assembling the discussion thus far, we can view the time-T information

set as containing the current and past values of either (or both) y and ε,

ΩT = yT , yT−1, yT−2, ..., εT , εT−1, εT−2, ....

Based upon that information set, we want to find the optimal forecast

of y at some future time T + h. The optimal forecast is the one with the

smallest loss on average, that is, the forecast that minimizes expected loss.

It turns out that under reasonably weak conditions the optimal forecast is

the conditional mean,

E(yT+h|ΩT ),

the expected value of the future value of the series being forecast, conditional

upon available information.
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In general, the conditional mean need not be a linear function of the

elements of the information set. Because linear functions are particularly

tractable, we prefer to work with linear forecasts – forecasts that are linear in

the elements of the information set – by finding the best linear approximation

to the conditional mean, called the linear projection, denoted

P (yT+h|ΩT ).

This explains the common term “linear least squares forecast.” The linear

projection is often very useful and accurate, because the conditional mean is

often close to linear. In fact, in the Gaussian case the conditional expectation

is exactly linear, so that

E(yT+h|ΩT ) = P (yT+h|ΩT ).

7.3.1 Optimal Point Forecasts for Finite-Order Moving Averages

Our forecasting method is always the same: we write out the process for

the future time period of interest, T + h, and project it on what’s known at

time T , when the forecast is made. This process is best learned by example.

Consider an MA(2) process,

yt = εt + θ1εt−1 + θ2εt−2

εt ∼ WN(0, σ2).

Suppose we’re standing at time T and we want to forecast yT+1. First we

write out the process for T + 1,

yT+1 = εT+1 + θ1εT + θ2εT−1.
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Then we project on the time-T information set, which simply means that all

future innovations are replaced by zeros. Thus

yT+1,T = P (yT+1|ΩT ) = θ1εT + θ2εT−1.

To forecast 2 steps ahead, we note that

yT+2 = εT+2 + θ1εT+1 + θ2εT ,

and we project on the time-T information set to get

yT+2,T = θ2εT .

Continuing in this fashion, we see that

yT+h,T = 0,

for all h>2.

Now let’s compute the corresponding forecast errors.11 We have:

eT+1,T = εT+1 WN

eT+2,T = εT+2 + θ1εT+1 (MA(1))

eT+h,T = εT+h + θ1εT+h−1 + θ2εT+h−2 (MA(2)),

for all h>2.

Finally, the forecast error variances are:

σ2
1 = σ2

σ2
2 = σ2(1 + θ2

1)

σ2
h = σ2(1 + θ2

1 + θ2
2),

11Recall that the forecast error is simply the difference between the actual and forecasted values. That is,
eT+h,T = yT+h − yT+h,T .
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for all h > 2. Moreover, the forecast error variance for h>2 is just the

unconditional variance of yt.

Now consider the general MA(q) case. The model is

yt = εt + θ1εt−1 + ... θqεt−q.

First, consider the forecasts. If h ≤ q, the forecast has the form

yT+h,T = 0 + “adjustment,′′

whereas if h > q the forecast is

yT+h,T = 0.

Thus, an MA(q) process is not forecastable (apart from the unconditional

mean) more than q steps ahead. All the dynamics in the MA(q) process,

which we exploit for forecasting, “wash out” by the time we get to horizon

q, which reflects the autocorrelation structure of the MA(q) process. (Recall

that, as we showed earlier, it cuts off at displacement q.) Second, consider

the corresponding forecast errors. They are

eT+h,T = MA(h− 1)

for h ≤ q and

eT+h,T = MA(q)

for h > q. The h-step-ahead forecast error for h > q is just the process itself,

minus its mean.

Finally, consider the forecast error variances. For h ≤ q,

σ2
h ≤ var(yt),
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whereas for h > q,

σ2
h = var(yt).

In summary, we’ve thus far studied the MA(2), and then the general MA(q),

process, computing the optimal h-step-ahead forecast, the corresponding fore-

cast error, and the forecast error variance. As we’ll now see, the emerging

patterns that we cataloged turn out to be quite general.

7.3.2 Optimal Point Forecasts for Infinite-Order Moving Averages

By now you’re getting the hang of it, so let’s consider the general case of an

infinite-order MA process. The infinite-order moving average process may

seem like a theoretical curiosity, but precisely the opposite is true. Any

covariance stationary process can be written as a (potentially infinite-order)

moving average process, and moving average processes are easy to understand

and manipulate, because they are written in terms of white noise shocks,

which have very simple statistical properties. Thus, if you take the time

to understand the mechanics of constructing optimal forecasts for infinite

moving-average processes, you’ll understand everything, and you’ll have some

powerful technical tools and intuition at your command.

Recall that the general linear process is

yt =
∞∑
i=0

biεt−i,

where

εt ∼ WN(0, σ2)

b0 = 1

σ2
∞∑
i=0

b2
i <∞.

We proceed in the usual way. We first write out the process at the future
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time of interest:

yT+h = εT+h + b1εT+h−1 + ...+ bhεT + bh+1εT−1 + ...

Then we project yT+h on the time-T information set. The projection yields

zeros for all of the future ε’s (because they are white noise and hence unfore-

castable), leaving

yT+h,T = bhεT + bh+1εT−1 + ...

It follows that the h-step ahead forecast error is serially correlated; it follows

an MA(h− 1) process,

eT+h,T = (yT+h − yT+h,T ) =
h−1∑
i=0

biεT+h−i,

with mean 0 and variance

σ2
h = σ2

h−1∑
i=0

b2
i .

A number of remarks are in order concerning the optimal forecasts of the

general linear process, and the corresponding forecast errors and forecast

error variances. First, the 1-step-ahead forecast error is simply εT+1. εT+1

is that part of yT+1 that can’t be linearly forecast on the basis of Ωt (which,

again, is why it is called the innovation). Second, although it might at first

seem strange that an optimal forecast error would be serially correlated, as

is the case when h > 1, nothing is awry. The serial correlation can’t be

used to improve forecasting performance, because the autocorrelations of the

MA(h−1) process cut off just before the beginning of the time-T information

set εT , εT−1, .... This is a general and tremendously important property of

the errors associated with optimal forecasts: errors from optimal forecasts

can’t be forecast using information available when the forecast was made. If

you can forecast the forecast error, then you can improve the forecast, which

means that it couldn’t have been optimal. Finally, note that as h approaches
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infinity yT+h,T approaches zero, the unconditional mean of the process, and

σ2
h approaches σ2

∑∞
i=0 b

2
i , the unconditional variance of the process, which

reflects the fact that as h approaches infinity the conditioning information on

which the forecast is based becomes progressively less useful. In other words,

the distant future is harder to forecast than the near future!

7.3.3 Interval and Density Forecasts

Now we construct interval and density forecasts. Regardless of whether the

moving average is finite or infinite, we proceed in the same way, as follows.

The definition of the h-step-ahead forecast error is

eT+h,T = yT+h − yT+h,T .

Equivalently, the h-step-ahead realized value, yT+h , equals the forecast plus

the error,

yT+h = yT+h,T + eT+h,T .

If the innovations are normally distributed, then the future value of the series

of interest is also normally distributed, conditional upon the information set

available at the time the forecast was made, and so we have the 95% h-step-

ahead interval forecast yT+h,T ±1.96σh.
12 In similar fashion, we construct the

h-step-ahead density forecast as

N(yT+h,T , σ
2
h).

The mean of the conditional distribution of yT+h is yT+h,T , which of course

must be the case because we constructed the point forecast as the conditional

mean, and the variance of the conditional distribution is σ2
h, the variance of

12Confidence intervals at any other desired confidence level may be constructed in similar fashion, by
using a different critical point of the standard normal distribution. A 90% interval forecast, for example, is
yT+h,T ± 1.64σh. In general, for a Gaussian process, a (1−α) · 100% confidence interval is yT+h,T ± zα/2σh,
where zα/2 is that point on the N(0, 1) distribution such that prob(z > zα/2) = α/2.
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the forecast error.

As an example of interval and density forecasting, consider again the

MA(2) process,

yt = εt + θ1εt−1 + θ2εt−2

εt ∼ WN(0, σ2).

Assuming normality, the 1-step-ahead 95% interval forecast is

yT+1,T = (θ1εT + θ2εT−1)± 1.96σ,

and the 1-step-ahead density forecast is

N(θ1εT + θ2εT−1, σ
2).

7.3.4 Making the Forecasts Operational

So far we’ve assumed that the parameters of the process being forecast are

known. In practice, of course, they must be estimated. To make our forecast-

ing procedures operational, we simply replace the unknown parameters in our

formulas with estimates, and the unobservable innovations with residuals.

Consider, for example, the MA(2) process,

yt = εt + θ1εt−1 + θ2εt−2.

As you can readily verify using the methods we’ve introduced, the 2-step

ahead optimal forecast, assuming known parameters, is

yT+2,T = θ2εT ,

with corresponding forecast error

eT+2,T = εT+2 + θ1εT+1,
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and forecast-error variance

σ2
2 = σ2(1 + θ2

1).

To make the forecast operational, we replace unknown parameters with esti-

mates and the time-T innovation with the time-T residual, yielding

ŷT+2,T = θ̂2ε̂T

and forecast error variance

σ̂2
2 = σ̂2(1 + θ̂2

1).

Then, if desired, we can construct operational 2-step-ahead interval and den-

sity forecasts, as

ŷT+2,T ± zα/2σ̂2

and

N(ŷT+2,T , σ̂
2
2).

The strategy of taking a forecast formula derived under the assumption of

known parameters, and replacing unknown parameters with estimates, is a

natural way to operationalize the construction of point forecasts. However,

using the same strategy to produce operational interval or density forecasts

involves a subtlety that merits additional discussion. The forecast error vari-

ance estimate so obtained can be interpreted as one that ignores parameter

estimation uncertainty, as follows. Recall once again that the actual future

value of the series is

yT+2 = εT+2 + θ1εT+1 + θ2εT ,
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and that the operational forecast is

ŷT+2,T = θ̂2εT .

Thus the exact forecast error is

êT+2,T = yT+2 − ŷT+2,T = εT+2 + θ1εT+1 + (θ2 − θ̂2)εT ,

the variance of which is very difficult to evaluate. So we make a convenient

approximation: we ignore parameter estimation uncertainty by assuming that

estimated parameters equal true parameters. We therefore set

(θ2 − θ̂2)

to zero, which yields

êT+2,T = εT+2 + θ1εT+1,

with variance

σ2
2 = σ2(1 + θ2

1),

which we make operational as

σ̂2
2 = σ̂2(1 + θ̂2

1).

7.4 Forecasting Cycles From an Autoregressive Per-

spective: Wold’s Chain Rule

7.4.1 Point Forecasts of Autoregressive Processes

Because any covariance stationary AR(p) process can be written as an infinite

moving average, there’s no need for specialized forecasting techniques for

autoregressions. Instead, we can simply transform the autoregression into a

moving average, and then use the techniques we developed for forecasting
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moving averages. It turns out, however, that a very simple recursive method

for computing the optimal forecast is available in the autoregressive case.

The recursive method, called the chain rule of forecasting, is best

learned by example. Consider the AR(1) process,

yt = φyt−1 + εt

εt ∼ WN(0, σ2).

First we construct the optimal 1-step-ahead forecast, and then we construct

the optimal 2-step-ahead forecast, which depends on the optimal 1-step-ahead

forecast, which we’ve already constructed. Then we construct the optimal

3-step-ahead forecast, which depends on the already-computed 2-step-ahead

forecast, which we’ve already constructed, and so on.

To construct the 1-step-ahead forecast, we write out the process for time

T + 1,

yT+1 = φyT + εT+1.

Then, projecting the right-hand side on the time-T information set, we obtain

yT+1,T = φyT .

Now let’s construct the 2-step-ahead forecast. Write out the process for time

T + 2,

yT+2 = φyT+1 + εT+2.

Then project directly on the time-T information set to get

yT+2,T = φyT+1,T .

Note that the future innovation is replaced by 0, as always, and that we have

directly replaced the time T+1 value of y with its earlier-constructed optimal

forecast. Now let’s construct the 3-step-ahead forecast. Write out the process
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for time T + 3,

yT+3 = φyT+2 + εT+3.

Then project directly on the time-T information set,

yT+3,T = φyT+2,T .

The required 2-step-ahead forecast was already constructed.

Continuing in this way, we can recursively build up forecasts for any and

all future periods. Hence the name “chain rule of forecasting.” Note that,

for the AR(1) process, only the most recent value of y is needed to construct

optimal forecasts, for any horizon, and for the general AR(p) process only

the p most recent values of y are needed.

7.4.2 Point Forecasts of ARMA processes

Now we consider forecasting covariance stationary ARMA processes. Just

as with autoregressive processes, we could always convert an ARMA process

to an infinite moving average, and then use our earlier-developed methods

for forecasting moving averages. But also as with autoregressive processes,

a simpler method is available for forecasting ARMA processes directly, by

combining our earlier approaches to moving average and autoregressive fore-

casting.

As always, we write out the ARMA(p, q) process for the future period of

interest,

yT+h = φ1yT+h−1 + ...+ φpyT+h−p + εT+h + θ1εT+h−1 + ...+ θqεT+h−q.

On the right side we have various future values of y and ε, and perhaps also

past values, depending on the forecast horizon. We replace everything on the

right-hand side with its projection on the time-T information set. That is,

we replace all future values of y with optimal forecasts (built up recursively



7.4. FORECASTING CYCLES FROMANAUTOREGRESSIVE PERSPECTIVE:WOLD’S CHAIN RULE241

using the chain rule) and all future values of ε with optimal forecasts (0),

yielding

yT+h,T = φ1yT+h−1,T + ...+ φpyT+h−p,T + εT+h,T + θ1εT+h−1,T + ...+ θqεT+h−q,T .

When evaluating this formula, note that the optimal time-T “forecast” of

any value of y or ε dated time T or earlier is just y or ε itself.

As an example, consider forecasting the ARMA(1, 1) process,

yt = φyt−1 + εt + θεt−1

εt ∼ WN(0, σ2).

Let’s find yT+1,T . The process at time T + 1 is

yT+1 = φyT + εT+1 + θεT .

Projecting the right-hand side on ΩT yields

yT+1,T = φyT + θεT .

Now let’s find yT+2,T . The process at time T + 2 is

yT+2 = φyT+1 + εT+2 + θεT+1.

Projecting the right-hand side on ΩT yields

yT+2,T = φyT+1,T .

Substituting our earlier-computed 1-step-ahead forecast yields

yT+2,T = φ (φyT + θεT ) (7.1)

= φ2yT + φθεT . (7.2)
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Continuing, it is clear that

yT+h,T = φyT+h−1,T ,

for all h > 1.

7.4.3 Interval and Density Forecasts

The chain rule, whether applied to pure autoregressive models or to ARMA

models, is a device for simplifying the computation of point forecasts. Interval

and density forecasts require the h-step-ahead forecast error variance, which

we get from the moving average representation, as discussed earlier. It is

σ2
h = σ2

h−1∑
i=0

b2
i ,

which we operationalize as

σ̂2
h = σ̂2

h−1∑
i=0

b̂2
i .

Note that we don’t actually estimate the moving average representation;

rather, we solve backward for as many b’s as we need, in terms of the original

model parameters, which we then replace with estimates.

Let’s illustrate by constructing a 2-step-ahead 95% interval forecast for the

ARMA(1, 1) process. We already constructed the 2-step-ahead point fore-

cast, yT+2,T ; we need only compute the 2-step-ahead forecast error variance.

The process is

yt = φyt−1 + εt + θεt−1
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Substitute backward for yt−1 to get

yt = φ(φyt−2 + εt−1 + θεt−2) + εt + θεt−1 (7.3)

= εt + (φ+ θ)εt−1 + ... (7.4)

We need not substitute back any farther, because the 2-step-ahead forecast

error variance is

σ2
2 = σ2(1 + b2

1),

where b1 is the coefficient on εt−1 in the moving average representation of the

ARMA(1,1) process, which we just calculated to be ( φ+ θ ). Thus the 2-step-

ahead interval forecast is yT+2,T ± 1.96σ2 , or (φ2yT + φθεT ) ± 1.96σ
√

1 + (φ+ θ)2.

We make this operational as (φ̂2yT + φ̂θ̂εT ) ± 1.96σ̂

√
1 + (φ̂+ θ̂)2.

7.5 Canadian Employment

We earlier examined the correlogram for the Canadian employment series,

and we saw that the sample autocorrelations damp slowly and the sample

partial autocorrelations cut off, just the opposite of what’s expected for a

moving average. Thus the correlogram indicates that a finite-order moving

average process would not provide a good approximation to employment dy-

namics. Nevertheless, nothing stops us from fitting moving average models,

so let’s fit them and use the AIC and the SIC to guide model selection.

Moving average models are nonlinear in the parameters; thus, estimation

proceeds by nonlinear least squares (numerical minimization). The idea is the

same as when we encountered nonlinear least squares in our study of nonlinear

trends – pick the parameters to minimize the sum of squared residuals – but

finding an expression for the residual is a little bit trickier. To understand

why moving average models are nonlinear in the parameters, and to get a

feel for how they’re estimated, consider an invertible MA(1) model, with a
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nonzero mean explicitly included for added realism,

yt = µ + εt + θεt−1.

Substitute backward m times to obtain the autoregressive approximation

yt ≈
µ

1 + θ
+ θyt−1 − θ2yt−2 + ...+ (−1)m+1 θmyt−m + εt.

Thus an invertible moving average can be approximated as a finite-order

autoregression. The larger is m, the better the approximation. This lets us

(approximately) express the residual in terms of observed data, after which

we can use a computer to solve for the parameters that minimize the sum of

squared residuals,

µ̂, θ̂ = argmin

µ, θ

T∑
t=1

[
yt −

(
µ

1 + θ
+ θyt−1 − θ2yt−2 + ... + (−1)m+1θmyt−m

)]2

σ̂2 =
1

T

T∑
t=1

[
yt −

(
µ̂

1 + θ̂
+ θ̂yt−1 − θ̂2yt−2 + ... + (−1)m+1θ̂myt−m

)]2

.

The parameter estimates must be found using numerical optimization

methods, because the parameters of the autoregressive approximation are

restricted. The coefficient of the second lag of y is the square of the coef-

ficient on the first lag of y, and so on. The parameter restrictions must be

imposed in estimation, which is why we can’t simply run an ordinary least

squares regression of y on lags of itself.

The next step would be to estimate MA(q) models, q = 1, 2, 3, 4. Both

the AIC and the SIC suggest that the MA(4) is best. To save space, we
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report only the results of MA(4) estimation in Table 7.12a. The results of the

MA(4) estimation, although better than lower-order MAs, are nevertheless

poor. The R2 of .84 is rather low, for example, and the Durbin-Watson

statistic indicates that the MA(4) model fails to account for all the serial

correlation in employment. The residual plot, which we show in Figure 7.12b,

clearly indicates a neglected cycle, an impression confirmed by the residual

correlogram (Table 7.13, Figure 7.14).
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(a) Employment MA(4) Regression

(b) Employment MA(4) Residual Plot

Figure 7.12: Employment: MA(4) Model
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Figure 7.13: Employment MA(4) Residual Correlogram
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Figure 7.14: Employment MA(4) Residual Sample Autocorrelation and Partial Autocorre-
lation
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If we insist on using a moving average model, we’d want to explore orders

greater than four, but all the results thus far indicate that moving average

processes don’t provide good approximations to employment dynamics. Thus

let’s consider alternative approximations, such as autoregressions. Autore-

gressions can be conveniently estimated by ordinary least squares regression.

Consider, for example, the AR(1) model,

(yt − µ) = φ(yt−1 − µ) + εt

εt ∼ (0, σ2)

We can write it as

yt = c + φyt−1 + εt

where c = µ(1− φ). The least squares estimators are

ĉ, φ̂ = argmin

c, φ

T∑
t=1

[yt − c − φyt−1]
2

σ̂2 =
1

T

T∑
t=1

[
yt − ĉ − φ̂yt−1

]2

.

The implied estimate of µ is

µ̂ = ĉ/(1− φ̂).

Unlike the moving average case, for which the sum of squares function

is nonlinear in the parameters, requiring the use of numerical minimization

methods, the sum of squares function for autoregressive processes is linear

in the parameters, so that estimation is particularly stable and easy. In the

AR(1) case, we simply run an ordinary least squares regression of y on one
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lag of y; in the AR(p) case, we regress y on p lags of y.

We estimate AR(p) models, p = 1, 2, 3, 4. Both the AIC and the SIC

suggest that the AR(2) is best. To save space, we report only the results

of AR(2) estimation in Table 7.15a. The estimation results look good, and

the residuals (Figure 7.15b) look like white noise. The residual correlogram

(Table 7.16, Figure 7.17) supports that conclusion.
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(a) Employment AR(2) Model

(b) Employment AR(2) Residual Plot

Figure 7.15: Employment: MA(4) Model
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Figure 7.16: Employment AR(2) Residual Correlogram
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Figure 7.17: Employment AR(2) Residual Sample Autocorrelation and Partial Autocorrela-
tion
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(a) Employment AIC Values

(b) Employment SIC Values

Figure 7.18: Employment - Information Criterion for ARMA Models

Finally, we consider ARMA(p, q) approximations to the Wold representa-

tion. ARMA models are estimated in a fashion similar to moving average

models; they have autoregressive approximations with nonlinear restrictions

on the parameters, which we impose when doing a numerical sum of squares

minimization. We examine all ARMA(p, q) models with p and q less than or

equal to four; the SIC and AIC values appear in Tables 7.18a and 7.18b. The

SIC selects the AR(2) (an ARMA(2, 0)), which we’ve already discussed. The

AIC, which penalizes degrees of freedom less harshly, selects an ARMA(3, 1)

model. The ARMA(3, 1) model looks good; the estimation results appear in

Table 7.19a, the residual plot in Figure 7.19b, and the residual correlogram

in Table 7.20 and Figure fig: employment arma(3,1) residual sample auto-

correlation and partial autocorrelation.



7.5. CANADIAN EMPLOYMENT 255

(a) Employment ARMA(3,1) Model

(b) Employment ARMA(3,1) Residual Plot

Figure 7.19: Employment: MA(4) Model
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Figure 7.20: Employment ARMA(3,1) Correlogram
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Figure 7.21: Employment ARMA(3,1) Residual Sample Autocorrelation and Partial Auto-
correlation
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Although the ARMA(3, 1) looks good, apart from its lower AIC it looks

no better than the AR(2), which basically seemed perfect. In fact, there are

at least three reasons to prefer the AR(2). First, for the reasons that we dis-

cussed in Chapter 15 , when the AIC and the SIC disagree we recommend

using the more parsimonious model selected by the SIC. Second, if we con-

sider a model selection strategy involving not just examination of the AIC

and SIC, but also examination of autocorrelations and partial autocorrela-

tions, which we advocate, we’re led to the AR(2). Finally, and importantly,

the impression that the ARMA(3, 1) provides a richer approximation to em-

ployment dynamics is likely spurious in this case. The ARMA(3, 1) has a

inverse autoregressive root of -.94 and an inverse moving average root of -.97.

Those roots are of course just estimates and are likely to be statistically in-

distinguishable from one another, in which case we can cancel them, which

brings us down to an ARMA(2, 0), or AR(2), model with roots virtually in-

distinguishable from those of our earlier-estimated AR(2) process! We refer

to this situation as one of common factors in an ARMA model. Look out for

such situations, which can lead to substantial model simplification.

Now we put our forecasting technology to work to produce point and

interval forecasts for Canadian employment. Recall that the best moving

average model was an MA(4), while the best autoregressive model, as well as

the best ARMA model and the best model overall, was an AR(2).

Consider forecasting with the MA(4) model. Figure 7.22 shows employ-

ment history together with operational 4-quarter-ahead point and interval

extrapolation forecasts. The 4-quarter-ahead extrapolation forecast reverts

quickly to the mean of the employment index. In 1993.4, the last quarter of

historical data, employment is well below its mean, but the forecast calls for

a quick rise. The forecasted quick rise seems unnatural, because employment

dynamics are historically very persistent. If employment is well below its

mean in 1993.4, we’d expect it to stay below its mean for some time.
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Figure 7.22: Employment History and Forecast - MA(4)

Figure 7.23: Employment History and Long-Horizon Forecast - MA(4)
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Figure 7.24: Employment History, Forecast, and Realization - MA(4)
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The MA(4) model is unable to capture such persistence. The quick re-

version of the MA(4) forecast to the mean is a manifestation of the short

memory of moving average processes. Recall, in particular, that an MA(4)

process has a 4-period memory – all autocorrelations are zero beyond dis-

placement 4. Thus, all forecasts more than four steps ahead are simply equal

to the unconditional mean (100.2), and all 95% interval forecasts more than

four steps ahead are plus or minus 1.96 unconditional standard deviations.

All of this is made clear in Figure 7.23, in which we show the employment his-

tory together with 12-step-ahead point and interval extrapolation forecasts.

In Figure 7.24 we show the 4-quarter-ahead forecast and realization. Our

suspicions are confirmed. The actual employment series stays well below its

mean over the forecast period, whereas the forecast rises quickly back to the

mean. The mean squared forecast error is a large 55.9.

Now consider forecasting with the AR(2) model. In Figure 7.25 we show

the 4-quarter-ahead extrapolation forecast, which reverts to the unconditional

mean much less quickly, as seems natural given the high persistence of em-

ployment. The 4-quarter-ahead point forecast, in fact, is still well below the

mean. Similarly, the 95% error bands grow gradually and haven’t approached

their long-horizon values by four quarters out.

Figures 7.26 and 7.28 make clear the very different nature of the autore-

gressive forecasts. Figure 7.26 presents the 12-step-ahead extrapolation fore-

cast, and Figure 7.28 presents a much longer-horizon extrapolation forecast.

Eventually the unconditional mean is approached, and eventually the error

bands do go flat, but only for very long-horizon forecasts, due to the high

persistence in employment, which the AR(2) model captures.

In Figure 7.27 we show the employment history, 4-quarter-ahead AR(2)

extrapolation forecast, and the realization. The AR(2) forecast appears quite

accurate; the mean squared forecast error is 1.3, drastically smaller than that

of the MA(4) forecast.
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Figure 7.25: Employment History and Forecast - AR(2)

Figure 7.26: Employment History and Forecast, 12-step ahead - AR(2)
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Figure 7.27: Employment History, Forecast, and Realization - AR(2)

Figure 7.28: Employment History and Long-Horizon Forecast - AR(2)
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7.6 Exercises, Problems and Complements

1. Shapes of correlograms.

Given the following ARMA processes, sketch the expected forms of the

autocorrelation and partial autocorrelation functions. (Hint: examine

the roots of the various autoregressive and moving average lag operator

polynomials.)

(a) yt =
(

1
1−1.05L−.09L2

)
εt

(b) yt = (1− .4L)εt

(c) yt =
(

1
1−.7L

)
εt.

2. The autocovariance function of the MA(1) process, revisited.

In the text we wrote

γ(τ) = E(ytyt−τ) = E((εt + θεt−1)(εt−τ + θεt−τ−1)) =


θσ2, τ = 1

0, otherwise

.

Fill in the missing steps by evaluating explicitly the expectation

E((εt + θεt−1)(εt−τ + θεt−τ−1)).

3. ARMA algebra.

Derive expressions for the autocovariance function, autocorrelation func-

tion, conditional mean, unconditional mean, conditional variance and

unconditional variance of the following processes:

(a) yt = µ+ εt + θ1εt−1 + θ2εt−2

(b) yt = φyt−1 + εt + θεt−1.
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4. Mechanics of fitting ARMA models.

You have data for daily transfers over BankWire, a financial wire transfer

system in a country responsible for much of the world’s finance, over a

recent span of 200 business days.

(a) Is trend or seasonality operative? Defend your answer.

(b) Find a parsimonious ARMA(p, q) model that fits well, and defend

its adequacy.

(c) In item 4b above, you were asked to find a parsimonious ARMA(p,q)

model that fits the transfer data well, and to defend its adequacy.

Repeat the exercise, this time using only the first 175 days for model

selection and fitting. Is it necessarily the case that the selected

ARMA model will remain the same as when all 200 days are used?

Does yours?

(d) Use your estimated model to produce point and interval forecasts for

days 176 through 200. Plot them and discuss the forecast pattern.

(e) Compare your forecasts to the actual realizations. Do the forecasts

perform well? Why or why not?

5. A different way to estimate autoregressive models.

We discussed estimation of autoregressive models using ordinary least

squares. We could also write the model as a regression on an intercept,

with a serially correlated disturbance. Thus the autoregressive model is

yt = µ+ εt

Φ(L)εt = vt

vt ∼ WN(0, σ2).
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We can estimate the model using nonlinear least squares. Eviews and

other forecasting packages proceed in precisely that way.13

This framework – regression on a constant with serially correlated dis-

turbances – has a number of attractive features. First, the mean of the

process is the regression constant term.14 Second, it leads us naturally

toward regression on more than just a constant, as other right-hand side

variables can be added as desired.

6. Aggregation and disaggregation: top-down vs. bottom-up fore-

casting models.

Related to the issue of methods and complexity discussed in Chapter 2

is the question of aggregation. Often we want to forecast an aggregate,

such as total sales of a manufacturing firm, but we can take either an

aggregated or disaggregated approach.

Suppose, for example, that total sales is composed of sales of three prod-

ucts. The aggregated, or top-down, or macro, approach is simply to

model and forecast total sales. The disaggregated, or bottom- up, or

micro, approach is to model and forecast separately the sales of the

individual products, and then to add them together.

(a) Perhaps surprisingly, it’s impossible to know in advance whether

the aggregated or disaggregated approach is better. It all depends

on the specifics of the situation; the only way to tell is to try both

approaches and compare the forecasting results.

(b) However, in real-world situations characterized by likely model mis-

specification and parameter estimation uncertainty, there are rea-

sons to suspect that the aggregated approach may be preferable.

13That’s why, for example, information on the number of iterations required for convergence is presented
even for estimation of the autoregressive model.

14Hence the notation “µ” for the intercept.
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First, standard (e.g., linear) models fit to aggregated series may be

less prone to specification error, because aggregation can produce

approximately linear relationships even when the underlying disag-

gregated relationships are not linear. Second, if the disaggregated

series depend in part on a common factor (e.g., general business

conditions) then it will emerge more clearly in the aggregate data.

Finally, modeling and forecasting of one aggregated series, as op-

posed to many disaggregated series, relies on far fewer parameter

estimates.

(c) Of course, if our interest centers on the disaggregated components,

then we have no choice but to take a disaggregated approach.

(d) Sometimes, even if interest centers on an aggregate, there may no

data available for it, but there may be data for relevant components.

Consider, for example, forecasting the number of pizzas eaten next

year by Penn students. There’s no annual series available for “pizzas

eaten by Penn students,” but there may be series of Penn enrollment,

annual U.S. pizza consumption, U.S. population, etc. from which

a forecast could be built. This is called “Fermi-izing” the prob-

lem, after the great Italian physicist Enrico Fermi. See Tetlock and

Gardner (2015), chapter 5.

(e) It is possible that an aggregate forecast may be useful in forecasting

disaggregated series. Why? (Hint: See Fildes and Stekler, 2000.)

7. Forecasting an ARMA(2, 2) process.

Consider the ARMA(2, 2) process:

yt = φ1yt−1 + φ2yt−2 + εt + θ1εt−1 + θ2εt−2.
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a. Verify that the optimal 1-step ahead forecast made at time T is

yT+1,T = φ1yT + φ2yT−1 + θ1εT + θ2εT−1.

b. Verify that the optimal 2-step ahead forecast made at time T is

yT+2,T = φ1yT+1,T + φ2yT + θ2εT ,

and express it purely in terms of elements of the time-T information

set.

c. Verify that the optimal 3-step ahead forecast made at time T is

yT+3,T = φ1yT+2,T + φ2yT+1,T ,

and express it purely in terms of elements of the time-T information

set.

d. Show that for any forecast horizon h greater than or equal to three,

yT+h,T = φ1yT+h−1,T + φ2yT+h−2,T .

8. ARMA lag inclusion.

In our MA model fitting for employment, why did we leave the MA(3)

term in the preferred MA(4) model, despite the insignificant p-value?

Discuss costs and benefits of dropping the insignificant MA(3) term.

9. Modeling cyclical dynamics.

As a research analyst at the U.S. Department of Energy, you have been

asked to model non-seasonally-adjusted U.S. imports of crude oil.

(a) Find a suitable time series on the web.

(b) Create a model that captures the trend in the series.
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(c) Adding to the model from part 9b, create a model with trend and

a full set of seasonal dummy variables.

(d) Observe the residuals of the model from part b and their correlo-

gram. Is there evidence neglected dynamics? If so, what to do?

10. Applied ARMA modeling.

Nile.com, a successful on-line bookseller, monitors and forecasts the

number of “hits” per day to its web page. You have daily hits data

for 1/1/98 through 9/28/98.

a. Fit and assess the standard linear, quadratic, and log linear trend

models.

b. For a few contiguous days roughly in late April and early May, hits

were much higher than usual during a big sale. Do you find evidence

of a corresponding group of outliers in the residuals from your trend

models? Do they influence your trend estimates much? How should

you treat them?

c. Model and assess the significance of day-of-week effects in Nile.com

web page hits.

d. Select a final model, consisting only of trend and seasonal components,

to use for forecasting.

e. Use your model to forecast Nile.com hits through the end of 1998.

f. Generalize your earlier trend + seasonal model to allow for cyclical

dynamics, if present, via ARMA(p, q) disturbances. Write the full

specification of your model in general notation (e.g., with p and q left

unspecified).

g. Estimate all models, corresponding to p = 0, 1, 2, 3 and q = 0, 1, 2, 3,

while leaving the original trend and seasonal specifications intact, and

select the one that optimizes SIC.
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h. Using the model selected in part 10g, write theoretical expressions for

the 1- and 2-day- ahead point forecasts and 95% interval forecasts,

using estimated parameters.

i. Calculate those point and interval forecasts for Nile.com for 9/29 and

9/30.

11. Mechanics of fitting ARMA models.

On the book’s web page you will find data for daily transfers over

BankWire, a financial wire transfer system in a country responsible for

much of the world’s finance, over a recent span of 200 business days.

a. Is trend or seasonality operative? Defend your answer.

b. Find a parsimonious ARMA(p, q) model that fits well, and defend its

adequacy.

c. Repeat the exercise 11b, this time using only the first 175 days for

model selection and fitting. Is it necessarily the case that the selected

ARMA model will remain the same as when all 200 days are used?

Does yours?

d. Use your estimated model to produce point and interval forecasts for

days 176 through 200. Plot them and discuss the forecast pattern.

e. Compare your forecasts to the actual realizations. Do the forecasts

perform well? Why or why not?

f. Discuss precisely how your software constructs point and interval fore-

casts. It should certainly match our discussion in spirit, but it may

differ in some of the details. Are you uncomfortable with any of the

assumptions made? How, if at all, could the forecasts be improved?
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7.7 Notes

Our discussion of estimation was a bit fragmented; we discussed estimation of

moving average and ARMA models using nonlinear least squares, whereas we

discussed estimation of autoregressive models using ordinary least squares.

A more unified approach proceeds by writing each model as a regression on

an intercept, with a serially correlated disturbance. Thus the moving average

model is

yt = µ+ εt

εt = Θ(L)vt

vt ∼ WN(0, σ2),

the autoregressive model is

yt = µ+ εt

Φ(L)εt = vt

vt ∼ WN(0, σ2),

and the ARMA model is

yt = µ+ εt

Φ(L)εt = Θ(L)vt

vt ∼ WN(0, σ2).

We can estimate each model in identical fashion using nonlinear least squares.

Eviews and other forecasting packages proceed in precisely that way.15

This framework – regression on a constant with serially correlated distur-

bances – has a number of attractive features. First, the mean of the process

is the regression constant term.16 Second, it leads us naturally toward re-

15That’s why, for example, information on the number of iterations required for convergence is presented
even for estimation of the autoregressive model.

16Hence the notation “µ” for the intercept.
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gression on more than just a constant, as other right-hand side variables can

be added as desired. Finally, it exploits the fact that because autoregres-

sive and moving average models are special cases of the ARMA model, their

estimation is also a special case of estimation of the ARMA model.

Our description of estimating ARMA models – compute the autoregressive

representation, truncate it, and estimate the resulting approximate model by

nonlinear least squares – is conceptually correct but intentionally simplified.

The actual estimation methods implemented in modern software are more

sophisticated, and the precise implementations vary across software packages.

Beneath it all, however, all estimation methods are closely related to our

discussion, whether implicitly or explicitly. You should consult your software

manual for details.


