
Chapter 9

Assembling the Components: U.S.

Liquor Sales

Thus far we’ve focused on modeling trend, seasonals, and cycles one at a

time. In Chapter 5, we introduced models and forecasts of trends and sea-

sonality, respectively. Although cycles were likely present in the retail sales

and housing starts series that we examined empirically, we simply ignored

them. In Chapters 6 and 7 we introduced models and forecasts of cycles. We

forecasted employment using autoregressive models. We didn’t need trends

or seasonals, because our employment series had no trend or seasonality.

In many forecasting situations, however, more than one component is

needed to capture the dynamics in a series to be forecast – frequently they’re

all needed. Here we assemble our tools for forecasting trends, seasonals, and

cycles; we use regression on a trend and calendar-effect dummies, and we

capture cyclical dynamics by allowing for autoregressive effects in the regres-

sion disturbances, or by directly including lagged dependent variables in the

regression.
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9.1 Serially Correlated Disturbances

The full model is:

yt = Tt(θ) +
s∑
i=1

γiDit + εt

Φ(L)εt = vt

Φ(L) = 1− φ1L− ...− φpLp

vt ∼ WN(0, σ2).

Tt(θ) is a trend, with underlying parameters θ. For example, linear trend has

θ = β1 and

Tt(θ) = β1TIMEt,

and quadratic trend has θ = (β1, β2) and

Tt(θ) = β1TIMEt + β2TIME2
t .

In addition to the trend, we include seasonal dummies.1,2 The disturbances

follow an AR(p) process. In any particular application, of course, various

trend effects, seasonal and other calendar effects, and autoregressive cycli-

cal effects may not be needed and so could be dropped.3 Finally, vt is the

underlying white noise shock that drives everything.

Now consider constructing an h-step-ahead point forecast at time T , yT+h,T .

At time T + h,

yT+h = TT+h(θ) +
s∑
i=1

γiDi,T+h + εT+h.

Projecting the right-hand side variables on what’s known at time T (that is,

1Note that, because we include a full set of seasonal dummies, the trend does not contain an intercept,
and we don’t include an intercept in the regression.

2Holiday and trading-day dummies could could of course also be included if relevant.
3If the seasonal dummies were dropped, then we’d include an intercept in the regression.
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the time-T information set, ΩT ), yields the point forecast

yT+h,T = TT+h(θ) +
s∑
i=1

γiDi,T+h + εT+h,T .

As with the pure trend and seasonal models discussed earlier, the trend and

seasonal variables on the right-hand side are perfectly predictable. The only

twist concerns the cyclical behavior that may be lurking in the disturbance

term, future values of which don’t necessarily project to zero, because the

disturbance is no longer necessarily white noise. Instead, we construct εT+h,T

using the methods we developed for forecasting cycles.

As always, we make the point forecast operational by replacing unknown

parameters with estimates, yielding

ŷT+h,T = TT+h(θ̂) +

sγ̂i∑
i=1

Di,T+h + ε̂T+h,T .

To construct ε̂T+h,T , in addition to replacing the parameters in the formula

for εT+h,T with estimates, we replace the unobservable disturbances, the εt’s,

with the observable residuals, the et’s.

The complete h-step-ahead density forecast under normality is

N(ŷT+h,T , σ̂
2
h).

where σ̂2
h is the operational estimate of the variance of the error in forecasting

εT+h.

Once again, we don’t actually have to do any of the computations just

discussed; rather, the computer does them all for us. So let’s get on with an

application, now that we know what we’re doing.
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(a) Liquor Sales in Levels, 1968 - 1986 (b) Log Liquor Sales, 1968 - 1993

Figure 9.1: Liquor Sales

9.2 Lagged Dependent Variables

We use:

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + Tt(θ) +
s∑
i=1

γiDit + εt

εt ∼ WN(0, σ2).

9.2.1 Case Study: Forecasting Liquor Sales with Deterministic

Trends and Seasonals

We’ll forecast monthly U.S. liquor sales. In Figure 9.1a, we show the history

of liquor sales, 1968.01 - 1993.12. Notice its pronounced seasonality – sales

skyrocket during the Christmas season. In Figure 9.1b we show log liquor

sales; we take logs to stabilize the variance, which grows over time.4 The

variance of log liquor sales is more stable, and it’s the series for which we’ll

build forecasting models.5

4The nature of the logarithmic transformation is such that it “compresses” an increasing variance. Make
a graph of log(x) as a function of x, and you’ll see why.

5From this point onward, for brevity we’ll simply refer to “liquor sales,” but remember that we’ve taken
logs.
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(a) Liquor Sales, Quadratic Trend Regression

(b) Liquor Sales, Quadratic Trend Regression - Residual Plot

Figure 9.2: Liquor Sales: Quadratic Trend Model

Liquor sales dynamics also feature prominent trend and cyclical effects.

Liquor sales trend upward, and the trend appears nonlinear in spite of the

fact that we’re working in logs. To handle the nonlinear trend, we adopt a

quadratic trend model (in logs). The estimation results are in Table 9.2a.

The residual plot (Figure 9.2b) shows that the fitted trend increases at a

decreasing rate; both the linear and quadratic terms are highly significant.

The adjusted R2 is 89%, reflecting the fact that trend is responsible for a

large part of the variation in liquor sales. The standard error of the regression

is .125; it’s an estimate of the standard deviation of the error we’d expect

to make in forecasting liquor sales if we accounted for trend but ignored
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Figure 9.3: Liquor Sales, Quadratic Trend - Residual Correlogram

seasonality and serial correlation. The Durbin-Watson statistic provides no

evidence against the hypothesis that the regression disturbance is white noise.

The residual plot, however, shows obvious residual seasonality. The Durbin-

Watson statistic missed it, evidently because it’s not designed to have power

against seasonal dynamics.6 The residual plot also suggests that there may be

a cycle in the residual, although it’s hard to tell (hard for the Durbin-Watson

statistic as well), because the pervasive seasonality swamps the picture and

makes it hard to infer much of anything.

The residual correlogram (Table 9.3) and its graph (Figure 9.4) confirm

the importance of the neglected seasonality. The residual sample autocor-

6Recall that the Durbin-Watson test is designed to detect simple AR(1) dynamics. It also has the ability
to detect other sorts of dynamics, but evidently not those relevant to the present application, which are very
different from a simple AR(1).
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Figure 9.4: Liquor Sales, Quadratic Trend Regression - Residual Sample Autocorrelation

relation function has large spikes, far exceeding the Bartlett bands, at the

seasonal displacements, 12, 24, and 36. It indicates some cyclical dynamics

as well; apart from the seasonal spikes, the residual sample autocorrelation

and partial autocorrelation functions oscillate, and the Ljung-Box statistic

rejects the white noise null hypothesis even at very small, non-seasonal, dis-

placements.

In Table 9.5a we show the results of regression on quadratic trend and a

full set of seasonal dummies. The quadratic trend remains highly significant.

The adjusted R2 rises to 99%, and the standard error of the regression falls
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to .046, which is an estimate of the standard deviation of the forecast error

we expect to make if we account for trend and seasonality but ignore serial

correlation. The Durbin-Watson statistic, however, has greater ability to

detect serial correlation now that the residual seasonality has been accounted

for, and it sounds a loud alarm.

The residual plot of Figure 9.5b shows no seasonality, as that’s now picked

up by the model, but it confirms the Durbin-Watson’s warning of serial cor-

relation. The residuals are highly persistent, and hence predictable. We

show the residual correlogram in tabular and graphical form in Table 9.6 and

Figure 9.7. The residual sample autocorrelations oscillate and decay slowly,

and they exceed the Bartlett standard errors throughout. The Ljung-Box

test strongly rejects the white noise null at all displacements. Finally, the

residual sample partial autocorrelations cut off at displacement 3. All of this

suggests that an AR(3) would provide a good approximation to the distur-

bance’s Wold representation.

In Table 9.8a, then, we report the results of estimating a liquor sales model

with quadratic trend, seasonal dummies, and AR(3) disturbances. The R2

is now 100%, and the Durbin-Watson is fine. One inverse root of the AR(3)

disturbance process is estimated to be real and close to the unit circle (.95),

and the other two inverse roots are a complex conjugate pair farther from

the unit circle. The standard error of this regression is an estimate of the

standard deviation of the forecast error we’d expect to make after modeling

the residual serial correlation, as we’ve now done; that is, it’s an estimate of

the standard deviation of v.7

We show the residual plot in Figure 9.8b and the residual correlogram

in Table 9.9 and Figure fig: liquor sales quadratic seasonal dummies and

ar(3) residual sample autocorrelation. The residual plot reveals no patterns;

instead, the residuals look like white noise, as they should. The residual

7Recall that v is the innovation that drives the ARMA process for the regression disturbance, ε. It’s a
very small .027, roughly half that obtained when we ignored serial correlation.
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sample autocorrelations and partial autocorrelations display no patterns and

are mostly inside the Bartlett bands. The Ljung-Box statistics also look good

for small and moderate displacements, although their p-values decrease for

longer displacements.

All things considered, the quadratic trend, seasonal dummy, AR(3) speci-

fication seems tentatively adequate. We also perform a number of additional

checks. In Figure 9.11, we show a histogram and normality test applied to the

residuals. The histogram looks symmetric, as confirmed by the skewness near

zero. The residual kurtosis is a bit higher then three and causes Jarque-Bera

test to reject the normality hypothesis with a p-value of .02, but the residuals

nevertheless appear to be fairly well approximated by a normal distribution,

even if they may have slightly fatter tails.

Now we use the estimated model to produce forecasts. In Figure 9.12 we

show the history of liquor sales and a 12-month-ahead extrapolation forecast

for 1994.8 To aid visual interpretation, we show only two years of history.

The forecast looks reasonable. It’s visually apparent that the model has

done a good job of picking up the seasonal pattern, which dominates the

local behavior of the series. In Figure 9.13, we show the history, the forecast,

and the 1994 realization. The forecast was very good!

In Figure 9.14 we show four years of history together with a 60-month-

ahead (five year) extrapolation forecast, to provide a better feel for the dy-

namics in the forecast. The figure also makes clear the trend forecast is

slightly downward . To put the long-horizon forecast in historical context,

we show in Figure 13 the 60-month-ahead forecast together with the com-

plete history. Finally, in Figure 14, we show the history and point forecast of

the level of liquor sales (as opposed to log liquor sales), which we obtain by

exponentiating the forecast of log liquor sales.9

8We show the point forecast together with 95% intervals.
9Recall that exponentiating “undoes” a natural logarithm.
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(a) Liquor Sales, Quadratic Trend with Seasonal Dummies

(b) Liquor Sales, Quadratic Trend with Seasonal Dummies - Residual Plot

Figure 9.5: Liquor Sales - Trend and Seasonal Model
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Figure 9.6: Liquor Sales, Quadratic Trend with Seasonal Dummies - Residual Correlogram
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Figure 9.7: Liquor Sales, Quadratic Trend with Seasonal Dummies - Residual Sample Au-
tocorrelation
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(a) Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3)

(b) Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3) Disturbances - Residual Plot

Figure 9.8: Liquor Sales - Trend, Seasonal, and AR(3) Model
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Figure 9.9: Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3) Disturbances
- Residual Correlogram
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Figure 9.10: Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3) Disturbances
- Residual Sample Autocorrelation
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Figure 9.11: Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3) Disturbances
- Residual Histogram and Normality test

Figure 9.12: Liquor Sales: History and 12-Month-Ahead Forecast
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Figure 9.13: Liquor Sales: History, 12-Month-Ahead Forecast, and Realization

Figure 9.14: Liquor Sales: History and Four-Year-Ahead Forecast
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9.3 Exercises, Problems and Complements

1. Serially correlated disturbances vs. lagged dependent variables. Esti-

mate the quadratic trend model for log liquor sales with seasonal dum-

mies and three lags of the dependent variable included directly. Discuss

your results and compare them to those we obtained when we instead al-

lowed for AR(3) disturbances in the regression. Which model is selected

by AIC and SIC?

2. Assessing the adequacy of the liquor sales forecasting model determinis-

tic trend specification. Critique the liquor sales forecasting model that

we adopted (log liquor sales with quadratic trend, seasonal dummies,

and AR(3) disturbances).10

a. If the trend is not a good approximation to the actual trend in the

series, would it greatly affect short-run forecasts? Long-run forecasts?

b. How might you fit and assess the adequacy of a broken linear trend?

How might you decide on the location of the break point?

3. Improving non-trend aspects of the liquor sales forecasting model.

a. Recall our argument that best practice requires using a χ2
m−k dis-

tribution rather than a χ2
m distribution to assess the significance of

Q-statistics for model residuals, where m is the number of autocorre-

lations included in the Q statistic and k is the number of parameters

estimated. In several places in this chapter, we failed to heed this

advice when evaluating the liquor sales model. If we were instead to

compare the residual Q-statistic p-values to a χ2
m−k distribution, how,

if at all, would our assessment of the model’s adequacy change?

b. Return to the log-quadratic trend model with seasonal dummies, allow

for ARMA(p, q) disturbances, and do a systematic selection of p and
10I thank Ron Michener, University of Virginia, for suggesting parts d and f.
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q using AIC and SIC. Do AIC and SIC select the same model? If

not, which do you prefer? If your preferred disturbance model differs

from the AR(3) that we used, replicate the analysis in the text using

your preferred model, and discuss your results.

c. Discuss and evaluate another possible model improvement: inclusion

of an additional dummy variable indicating the number of Fridays

and/or Saturdays in the month. Does this model have lower AIC or

SIC than the final model used in the text? Do you prefer it to the

one in the text? Why or why not?

9.4 Notes


