
Chapter 11

Interval and Density Forecast

Evaluation

11.1 Interval Forecast Evaluation

Interval forecast evaluation is largely, but not entirely, subsumed by density

forecast evaluation. There is a simple method for absolute interval forecast

evaluation that must be mentioned. It is of great practical use, and moreover

is establishes the proper notion of a 1-step-ahead interval forecast error (which

should be unforecastable), and which then translates into the proper notion

of a 1-step-ahead density forecast error (which should also be unforecastable).

11.1.1 Absolute Standards

On Correct Unconditional vs. Conditional Coverage

A (1− α)% interval is correctly unconditionally calibrated if it brackets the

truth (1 − α)% of the time, on average over the long run. But an inter-

val can be correctly unconditionally calibrated and still poorly conditionally

calibrated insofar as it’s poorly calibrated at any given time, despite being

correct on average. In environments of time-varying conditional variance,

for example, constant-width intervals may be correctly unconditionally cal-

ibrate, but they cannot be correctly conditionally calibrated, because they
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Figure 11.1: True Exceedance Probabilities of Nominal one-sideed 1% Interval When Volatil-
ity is Persistent. We simulate returns from a realistically-calibrated dynamic volatility model. We plot
the series of true conditional exceedance probabilities, which we infer from the model. For visual reference
we include a horizontal line at the desired 1% probability level. Adapted from Andersen et al. 2013.

fail to tighten appropriately in low-volatility times and widen appropriately

in high-volatility times. Intervals can be completely mis-calibrated, correctly

calibrated unconditionally but not conditionally, or correctly conditionally

calibrated (which automatically implies correct conditional calibration). Fig-

ure 11.1 says it all

Christoffersen’s Absolute Interval Forecast Evaluation

Christoffersen (1998) considers likelihood-ratio tests of correct (1−α)% con-

ditional coverage. Define the sequence of hit indicators of a 1-step-ahead

forecast interval (the “hit series”) as

I
(1−1α)
t = 1{realized yt falls inside the interval}
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Under the null hypothesis of correct conditional calibration,

I
(1−α)
t ∼ iid Bernoulli(1− α).

Note well the two-part characterization. The hit series must have the

correct mean, (1−α), which corresponds to correct unconditional calibration.

But there’s more: the hit series must also be iid.1 When both hold, we have

correct conditional calibration. Conversely, rejection of the iid Bernoulli null

could be due to rejection of iid, rejection of the Bernoulli mean of (1− α),

or both. Hence it is advisable to use constructive procedures, which, when

rejections occur, convey information as to why rejections occur.

On Testing iid in Forecast Evaluation

Note that in (1-step) forecast evaluation we’re always testing some sort of

1-step error for iid (or at least white noise) structure.

For point forecasts the forecast errors are immediately at hand. If they’re

dependent, then, in general, today’s error is informative regarding tomorrow’s

likely error, and we could we could generally use that information to adjust

today’s point forecast to make it better, which means something is wrong.

For interval forecasts, the correct notion of “error” is the hit sequence,

which is readily constructed. If the hit sequence is dependent, then, in gen-

eral, today’s hit value (0 or 1) is informative regarding tomorrow’s likely

hit value, and we could we could generally use that information to adjust

today’s interval forecast to make it better conditionally calibrated, which

means something is wrong.

Soon in section 11.2.1 we will introduce yet another generalized “forecast

error” series for density forecasts, which again should be iid if all is well.

1In h-step-ahead contests the hit sequence need not be iid but should have h-dependent structure.
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11.1.2 Relative Standards

Little studied. It seems clear that for two correctly conditionally calibrated

interval forecasts, one should prefer the one with shorter average length. But,

just as with bias-variance tradeoffs for point forecast evaluation, presumably

one should willing to accept a little mis-calibration in exchange for a big

length reduction. One would have to define a loss function over miscalibration

and length.

11.2 Density Forecast Evaluation

11.2.1 Absolute Standards

Theory

We seek to characterize the properties of a density forecast that is optimal

with respect to an information set, that is, a density forecast that coincides

with the true conditional expectation.

The task of determining whether {pt(yt|Ωt)}mt=1 = {ft(yt|Ωt)}mt=1 appears

difficult, perhaps hopeless, because {ft(yt|Ωt)}mt=1 is never observed, even after

the fact. Moreover, and importantly, the true density ft(yt|Ωt) may exhibit

structural change, as indicated by its time subscript. As it turns out, the

challenges posed by these subtleties are not insurmountable.

Our methods are based on the relationship between the data generat-

ing process, ft(yt), and the sequence of density forecasts, pt(yt), as related

through the probability integral transform, zt , of the realization of the process

taken with respect to the density forecast. The probability integral transform

is simply the cumulative density function corresponding to the density pt(yt)

evaluated at yt,

zt =

∫ yt

−∞
pt(u)du

= Pt(yt).
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The density of zt, qt(zt), is of particular significance. Assuming that ∂P−1t (zt)
∂zt

is continuous and nonzero over the support of yt, then because pt(yt) = ∂Pt(yt)
∂yt

and yt = P−1
t (zt), zt has support on the unit interval with density

qt(zt) =

∣∣∣∣∂P−1
t (zt)

∂zt

∣∣∣∣ ft(P−1
t (zt))

=
ft(P

−1
t (zt))

pt(P
−1
t (zt))

.

Note, in particular, that if pt(yt) = ft(yt) , then qt(zt) is simply the U(0, 1)

density.

Now we go beyond the one-period characterization of the density of z when

pt(yt) = ft(yt) and characterize both the density and dependence structure of

the entire z sequence when pt(yt) = ft(yt) .

Proposition Suppose {yt}mt=1 is generated from {ft(yt|Ωt)}mt=1 where Ωt = {yt−1, yt−2, ...}.
If a sequence of density forecasts {pt(yt)mt=1} coincides with {ft(yt|Ωt)}mt=1,

then under the usual condition of a non-zero Jacobian with continuous par-

tial derivatives, the sequence of probability integral transforms of {yt}mt=1 with

respect to {pt(yt)}mt=1 is iid U(0, 1). That is,

{zt}mt=1 ∼ U(0, 1).

The intuition for the above result may perhaps be better understood from

the perspective of Christoffersen’s method for interval forecast evaluation,

If a sequence of density forecasts is correctly conditionally calibrated, then

every interval will be correctly conditionally calibrated and will generate an

iid Bernoulli hit sequence. This fact manifests itself in the iid uniformity of

the corresponding probability integral transforms.
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Practical Application

The theory developed thus far suggests that we evaluate density forecasts

by assessing whether the probability integral transform series, {zt}mt=1 , is iid

U(0, 1). Simple tests of iid U(0, 1) behavior are readily available, such as

those of Kolmogorov-Smirnov and Cramer-vonMises. Alone, however, such

tests are not likely to be of much value in the practical applications that

we envision, because they are not constructive; that is, when rejection oc-

curs, the tests generally provide no guidance as to why . If, for example, a

Kolmogorov-Smirnov test rejects the hypothesis of iid U(0, 1) behavior, is it

because of violation of unconditional uniformity, violation of iid, or both?

Moreover, even if we know that rejection comes from violation of uniformity,

we would like to know more: What, precisely, is the nature of the violation of

uniformity, and how important is it? Similarly, even if we know that rejection

comes from a violation of iid, what precisely is its nature? Is z heterogeneous

but independent, or is z dependent? If z is dependent, is the dependence

operative primarily through the conditional mean, or are higher-ordered con-

ditional moments, such as the variance, relevant? Is the dependance strong

and important, or is iid an economically adequate approximation, even if

strictly false?

Hence we adopt less formal, but more revealing, graphical methods, which

we supplement with more formal tests. First, as regards unconditional unifor-

mity, we suggest visual assessment using the obvious graphical tool, a density

estimate. Simple histograms are attractive in the present context because

they allow straightforward imposition of the constraint that z has support on

the unit interval, in contrast to more sophisticated procedures such as kernel

density estimates with the standard kernel functions. We visually compare

the estimated density to a U(0, 1), and we compute confidence intervals under

the null hypothesis of iid U(0, 1) exploiting the binomial structure, bin-by-

bin.
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Second, as regards evaluating whether z is iid, we again suggest visual

assessment using the obvious graphical tool, the correlogram, supplemented

with the usual Bartlett confidence intervals. The correlogram assists with

the detection of particular dependence patterns in z and can provide useful

information about the deficiencies of density forecasts. For example, serial

correlation in the z series indicates that conditional mean dynamics have been

inadequately modeled captured by the forecasts. Because we are interested

in potentially sophisticated nonlinear forms of dependence, not simply linear

dependence, we examine not only the correlogram of (z − z̄), but also those

of powers of (z − z̄) . Examination of the correlograms of (z − z̄), (z − z̄)2,

(z − z̄)3 and (z − z̄)4 should be adequate; it will reveal dependence operative

through the conditional mean, conditional variance, conditional skewness, or

conditional kurtosis.

11.2.2 Additional Discussion

Parameter Estimation Uncertainty

Our decision to ignore parameter estimation uncertainty was intentional. In

our framework, the forecasts are the primitives, and we do not require that

they be based on a model. This is useful because many density forecasts of

interest, such as those from surveys, do not come from models. A second and

very important example of model-free density forecasts is provided by the

recent finance literature, which shows how to use options written at differ-

ent strike prices to extract a model-free estimate of the market’s risk-neutral

density forecast of returns on the underlying asset. Moreover, many density

forecasts based on estimated models already incorporate the effects of pa-

rameter estimation uncertainty, for example by using simulation techniques.

Finally, sample sizes are often so large as to render negligible the effects of

parameter estimation uncertainty, as for example in our simulation study.
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Improving Mis-Calibrated Density Forecasts

It is apparent that our methods can be used to improve defective density

forecasts, in a fashion parallel to standard procedures for improving defective

point forecasts. Recall that in the case of defective point forecasts case we

can regress the y’s on the ŷ’s (the point forecasts) and use the estimated

relationship to construct improved point forecasts. Similarly, in the context

of density forecasts that are defective in that they produce an iid but non-

uniform z sequence, we can exploit the fact that (in period m+ 1, say)

fm+1(ym+1) = pm+1(ym+1) qm+1(P (ym+1))

= pm+1(ym+1) qm+1(zm+1).

Thus if we know qm+1(zm+1), we would know the actual distribution fm+1(ym+1).

Because qm+1(zm+1) is unknown, we obtain an estimate q̂m+1(zm+1) using the

historical series of zt
m
t=1, and we use that estimate to construct an improved

estimate, f̂m+1(ym+1), of the true distribution. Standard density estimation

techniques can be used to produce the estimate q̂m+1(zm+1).
2

Multi-Step Density Forecasts

Our methods may be generalized to handle multi-step-ahead density fore-

casts, so long as we make provisions for serial correlation in z, in a fashion

to the usual MA(h − 1) structure for optimal h-step ahead point forecast

errors. It may prove most effective to partition the z series into groups for

which we expect iid uniformity if the density forecasts were indeed correct.

For instance, for correct 2-step ahead forecasts, the sub-series z1, z3, z5, ... and

z2, z4, z6, ... should each be iid U(0, 1), although the full series would not be

iid U(0, 1). If a formal test is desired, it may be obtained via Bonferroni

2In finite samples, of course, there is no guarantee that the “improved” forecast will actually be superior
to the original, because it is based on an estimate of q rather than the true q, and the estimate could be
very poor. In large samples, however, very precise estimation should be possible.
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bounds, as suggested in a different context by Campbell and Ghysels (1995).

Under the assumption that the z series is (h − 1)-dependent, each of the

following h sub-series will be iid: {z1, z1+h, z1+2h, ...}, {z2, z2+h, z2+2h, ...},
..., {zh, z2h, z3h, ...}. Thus, a test with size bounded by α can be obtained

by performing h tests, each of size α/h, on each of the h sub-series of z,

and rejecting the null hypothesis of iid uniformity if the null is rejected for

any of the h sub-series. With the huge high-frequency datasets now available

in finance, such sample splitting, although inefficient, is not likely to cause

important power deterioration.

11.2.3 Relative Standards

The time-t one-step-ahead point predictive likelihood is

Pt = pt,t−1(yt)

It is simply the height of the earlier-made density forecast, pt,t−1(·) at the

realized value, yt. The full predictive likelihood is then

P =
N∏
i=1

Pt.

We can rank density forecasts using P . The sequence of density forecasts

with the largest P is the the sequence for which the subsequently-observed

realizations were most likely.

11.3 Stock Return Density Forecasting

11.3.1 A Preliminary GARCH Simulation

Before proceeding to apply our density forecast evaluation methods to real

data, it is useful to examine their efficacy on simulated data, for which we
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know the true data-generating process. We examine a simulated sample of

length 8000 from the t-GARCH(1,1) process:

yt =

√
2ht
3
t(6)

ht = .01 + .13y2
t−1 + .86ht−1.

Both the sample size and the parameter values are typical for financial asset

returns.3 Throughout, we split the sample in half and use the “in-sample””

observations 1 through 4000 for estimation, and the “out-of-sample” obser-

vations 4001 through 8000 for density forecast evaluation.

We will examine the usefulness of our density forecast evaluation methods

in assessing four progressively better density forecasts. To establish a bench-

mark, we first evaluate forecasts based on the naive and incorrect assumption

that the process is iid N(0, 1).4 That is, in each of the periods 4001-8000, we

simply issue the forecast “N(0, 1).”

In Figure *** we show two histograms of z, one with 20 bins and one with

40 bins.5 The histograms have a distinct non-uniform “butterfly” shape – a

hump in the middle and two wings on the sides – indicating that too many of

the realizations fall in middle and in the tails of the forecast densities relative

to what we would expect if the data were really iid normal. This is exactly

what we hope the histograms would reveal, given that the data-generating

process known to be unconditionally leptokurtic.

In Figure *** we show the correlograms of (z − z̄) , (z − z̄)2 , (z − z̄)3

and (z − z̄)4 .6 The strong serial correlation in (z − z̄)2 (and hence (z − z̄)4)

3The conditional variance function intercept of .01 is arbitrary but inconsequential; it simply amounts to
a normalization of the unconditional variance to 1 (.01/(1-.13-.86)).

4The process as specified does have mean zero and variance 1, but it is neither iid nor unconditionally
Gaussian.

5The dashed lines superimposed on the histogram are approximate 95% confidence intervals for the
individual bin heights under the null that z is iid U(0, 1).

6The dashed lines superimposed on the correlograms are Bartlett’s approximate 95% confidence intervals
under the null that z is iid.
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makes clear another key deficiency of the N(0, 1) forecasts – they fail to

capture the volatility dynamics operative in the process. Again, this is what

we hope the correlograms would reveal, given our knowledge of the true data-

generating process.

Second, we evaluate forecasts produced under the incorrect assumption

that the process is iid but not necessarily Gaussian. We estimate the uncon-

ditional distribution from observations 1 through 4000, freeze it, and then

issue it as the density forecast in each of the periods 4001 through 8000. Fig-

ures *** and ***contain the results. The z histogram is now almost perfect

(as it must be, apart from estimation error, which is small in a sample of size

4000), but the correlograms correctly continue to indicate neglected volatility

dynamics.

Third, we evaluate forecasts that are based on a GARCH(1, 1) model es-

timated under the incorrect assumption that the conditional density is Gaus-

sian. We use observations 1 through 4000 to estimate the model, freeze the

estimated model, and then use it to make (time-varying) density forecasts

from 4001 through 8000. Figures *** and *** contain the z histograms and

correlograms. The histograms are closer to uniform than those of Figure ***,

but they still display slight peaks at either end and a hump in the middle.

We would expect to see such a reduction, but not elimination, of the but-

terfly pattern, because allowance for conditionally Gaussian GARCH effects

should account for some, but not all, unconditional leptokurtosis.7 The cor-

relograms now show no evidence of neglected conditional volatility dynamics,

again as expected because the conditionally Gaussian GARCH model deliv-

ers consistent estimates of the conditional variance parameters, despite the

fact that the conditional density is misspecified, so that the estimated model

tracks the volatility dynamics well.

Finally, we forecast with an estimated correctly-specified t−GARCH(1, 1)

7Recall that the data generating process is conditionally , as well as unconditionally, fat-tailed.
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model. We show the z histogram and correlograms in Figures *** and ***.

Because we are forecasting with a correctly specified model, estimated using

a large sample, we would expect that the histogram and correlograms would

fail to find flaws with the density forecasts, which is the case.

In closing this section, we note that at each step of the above simulation

exercise, our density forecast evaluation procedures clearly and correctly re-

vealed the strengths and weaknesses of the various density forecasts. The

results, as with all simulation results, are specific to the particular data-

generating process examined, but the process and the sample size were cho-

sen to be realistic for the leading applications in high-frequency finance. This

gives us confidence that the procedures will perform well on real financial

data, to which we now turn, and for which we do not have the luxury of

knowing the true data-generating process.

11.3.2 Daily S&P 500 Returns

We study density forecasts of daily value-weighted S&P 500 returns, with div-

idends, from 02/03/62 through 12/29/95. As before, we split the sample into

in-sample and out-of-sample periods for model estimation and density fore-

cast evaluation. There are 4133 in-sample observations (07/03/62 - 12/29/78)

and 4298 out-of-sample observations (01/02/79 - 12/29/95). As before, we

assess a series of progressively more sophisticated density forecasts.

As in the simulation example, we begin with an examination of N(0, 1)

density forecasts, in spite of the fact that high-frequency financial data are

well-known to be unconditionally leptokurtic and conditionally heteroskedas-

tic. In Figures *** and *** we show the histograms and correlograms of

z. The histograms have the now-familiar butterfly shape, indicating that

the S&P realizations are leptokurtic relative to the N(0, 1) density forecasts,

and the correlograms of (z − z̄)2 and (z − z̄)4 indicate that the N(0, 1) fore-

casts are severely deficient, because they neglect strong conditional volatility
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dynamics.

Next, we generate density forecasts using an apparently much more so-

phisticated model. Both the Akaike and Schwarz information criteria select

an MA(1)−GARCH(1, 1) model for the in-sample data, which we estimate,

freeze, and use to generate out-of-sample density forecasts.

Figures *** and *** contain the z histograms and correlograms. The his-

tograms are closer to uniform and therefore improved, although they still

display slight butterfly pattern. The correlograms look even better; all evi-

dence of neglected conditional volatility dynamics has vanished.

Finally, we estimate and then forecast with an MA(1)− t−GARCH(1, 1)

model. We show the z histogram and correlograms in Figures *** and ***.

The histogram is improved, albeit slightly, and the correlograms remain good.

11.4 Exercises, Problems and Complements

1. xxx

11.5 Notes
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