
Chapter 15

Selection, Shrinkage, and Distillation

We start with more on selection (“hard threshold” – variables are either

kept or discarded), and then we introduce shrinkage (“soft threshold” – all

variables are kept, but parameter estimates are coaxed in a certain direction),

and then lasso, which blends selection and shrinkage.

15.1 All-Subsets Model Selection I: Information Crite-

ria

All-subsets model selection means that we examine every possible combina-

tion of K regressors and select the best. Examples include SIC and AIC.

Let us now discuss SIC and AIC in greater depth, as they are tremen-

dously important tools for building forecasting models. We often could fit a

wide variety of forecasting models, but how do we select among them? What

are the consequences, for example, of fitting a number of models and select-

ing the model with highest R2? Is there a better way? This issue of model

selection is of tremendous importance in all of forecasting.

It turns out that model-selection strategies such as selecting the model

with highest R2 do not produce good out-of-sample forecasting models. For-

tunately, however, a number of powerful modern tools exist to assist with

model selection. Most model selection criteria attempt to find the model
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with the smallest out-of-sample 1-step-ahead mean squared prediction error.

The criteria we examine fit this general approach; the differences among cri-

teria amount to different penalties for the number of degrees of freedom used

in estimating the model (that is, the number of parameters estimated). Be-

cause all of the criteria are effectively estimates of out-of-sample mean square

prediction error, they have a negative orientation – the smaller the better.

First consider the mean squared error,

MSE =

∑T
t=1 e

2
t

T
,

where T is the sample size and et = yt − ŷt. MSE is intimately related to

two other diagnostic statistics routinely computed by regression software, the

sum of squared residuals and R2. Looking at the MSE formula reveals

that the model with the smallest MSE is also the model with smallest sum

of squared residuals, because scaling the sum of squared residuals by 1/T

doesn’t change the ranking. So selecting the model with the smallest MSE

is equivalent to selecting the model with the smallest sum of squared residuals.

Similarly, recall the formula for R2,

R2 = 1−
∑T

t=1 e
2
t∑T

t=1(yt − ȳ)2
= 1− MSE

1
T

∑T
t=1(yt − ȳ)2

.

The denominator of the ratio that appears in the formula is just the sum

of squared deviations of y from its sample mean (the so-called “total sum

of squares”), which depends only on the data, not on the particular model

fit. Thus, selecting the model that minimizes the sum of squared residuals –

which as we saw is equivalent to selecting the model that minimizes MSE –

is also equivalent to selecting the model that maximizes R2.

Selecting forecasting models on the basis of MSE or any of the equiva-

lent forms discussed above – that is, using in-sample MSE to estimate the

out-of-sample 1-step-ahead MSE – turns out to be a bad idea. In-sample
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MSE can’t rise when more variables are added to a model, and typically

it will fall continuously as more variables are added, because the estimated

parameters are explicitly chosen to minimize the sum of squared residuals.

Newly-included variables could get estimated coefficients of zero, but that’s

a probability-zero event, and to the extent that the estimate is anything else,

the sum of squared residuals must fall. Thus, the more variables we include

in a forecasting model, the lower the sum of squared residuals will be, and

therefore the lower MSE will be, and the higher R2 will be. Again, the sum

of squared residuals can’t rise, and due to sampling error it’s very unlikely

that we’d get a coefficient of exactly zero on a newly-included variable even

if the coefficient is zero in population.

The effects described above go under various names, including in-sample

overfitting, reflecting the idea that including more variables in a forecasting

model won’t necessarily improve its out-of-sample forecasting performance,

although it will improve the model’s “fit” on historical data. The upshot is

that in-sample MSE is a downward biased estimator of out-of-sample MSE,

and the size of the bias increases with the number of variables included in

the model. In-sample MSE provides an overly-optimistic (that is, too small)

assessment of out-of-sample MSE.

To reduce the bias associated with MSE and its relatives, we need to

penalize for degrees of freedom used. Thus let’s consider the mean squared

error corrected for degrees of freedom,

s2 =

∑T
t=1 e

2
t

T −K
,

where K is the number of degrees of freedom used in model fitting.1 s2 is just

the usual unbiased estimate of the regression disturbance variance. That is,

it is the square of the usual standard error of the regression. So selecting the

model that minimizes s2 is equivalent to selecting the model that minimizes

1The degrees of freedom used in model fitting is simply the number of parameters estimated.
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the standard error of the regression. s2 is also intimately connected to the

R2 adjusted for degrees of freedom (the “adjusted R2,” or R̄2 ). Recall that

R̄2 = 1−
∑T

t=1 e
2
t/(T −K)∑T

t=1(yt − ȳ)2/(T − 1)
= 1− s2∑T

t=1(yt − ȳ)2/(T − 1)
.

The denominator of the R̄2 expression depends only on the data, not the

particular model fit, so the model that minimizes s2 is also the model that

maximizes R̄2. In short, the strategies of selecting the model that minimizes

s2, or the model that minimizes the standard error of the regression, or the

model that maximizes R̄2, are equivalent, and they do penalize for degrees of

freedom used.

To highlight the degree-of-freedom penalty, let’s rewrite s2 as a penalty

factor times the MSE,

s2 =

(
T

T −K

)∑T
t=1 e

2
t

T
.

Note in particular that including more variables in a regression will not nec-

essarily lower s2 or raise R̄2 – the MSE will fall, but the degrees-of-freedom

penalty will rise, so the product could go either way.

As with s2, many of the most important forecast model selection criteria

are of the form “penalty factor times MSE.” The idea is simply that if we

want to get an accurate estimate of the 1-step-ahead out-of-sample forecast

MSE, we need to penalize the in-sample residual MSE to reflect the degrees

of freedom used. Two very important such criteria are the Akaike Informa-

tion Criterion (AIC) and the Schwarz Information Criterion (SIC).

Their formulas are:

AIC = e(
2K
T )
∑T

t=1 e
2
t

T
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and

SIC = T (KT )
∑T

t=1 e
2
t

T
.

How do the penalty factors associated with MSE, s2, AIC and SIC

compare in terms of severity? All of the penalty factors are functions of

K/T , the number of parameters estimated per sample observation, and we

can compare the penalty factors graphically as K/T varies. In Figure *** we

show the penalties as K/T moves from 0 to .25, for a sample size of T = 100.

The s2 penalty is small and rises slowly with K/T ; the AIC penalty is a bit

larger and still rises only slowly with K/T . The SIC penalty, on the other

hand, is substantially larger and rises much more quickly with K/T .

It’s clear that the different criteria penalize degrees of freedom differently.

In addition, we could propose many other criteria by altering the penalty.

How, then, do we select among the criteria? More generally, what properties

might we expect a “good” model selection criterion to have? Are s2, AIC

and SIC “good” model selection criteria?
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We evaluate model selection criteria in terms of a key property called con-

sistency, also known as the oracle property. A model selection criterion

is consistent if:

a. when the true model (that is, the data-generating process, or DGP)

is among a fixed set models considered, the probability of selecting the

true DGP approaches one as the sample size gets large, and

b. when the true model is not among a fixed set of models considered, so

that it’s impossible to select the true DGP, the probability of selecting the

best approximation to the true DGP approaches one as the sample size

gets large.

We must of course define what we mean by “best approximation” above.

Most model selection criteria – including all of those discussed here – assess

goodness of approximation in terms of out-of-sample mean squared forecast

error.

Consistency is of course desirable. If the DGP is among those considered,

then we’d hope that as the sample size gets large we’d eventually select it.

Of course, all of our models are false – they’re intentional simplifications of

a much more complex reality. Thus the second notion of consistency is the

more compelling.

MSE is inconsistent, because it doesn’t penalize for degrees of freedom;

that’s why it’s unattractive. s2 does penalize for degrees of freedom, but as it

turns out, not enough to render it a consistent model selection procedure. The

AIC penalizes degrees of freedom more heavily than s2, but it too remains

inconsistent; even as the sample size gets large, the AIC selects models that

are too large (“overparameterized”). The SIC, which penalizes degrees of

freedom most heavily, is consistent.

The discussion thus far conveys the impression that SIC is unambigu-

ously superior to AIC for selecting forecasting models, but such is not the
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case. Until now, we’ve implicitly assumed a fixed set of models. In that case,

SIC is a superior model selection criterion. However, a potentially more

compelling thought experiment for forecasting may be that we may want

to expand the set of models we entertain as the sample size grows, to get

progressively better approximations to the elusive DGP. We’re then led to

a different optimality property, called asymptotic efficiency. An asymp-

totically efficient model selection criterion chooses a sequence of models, as

the sample size get large, whose out-of-sample forecast MSE approaches the

one that would be obtained using the DGP at a rate at least as fast as that

of any other model selection criterion. The AIC, although inconsistent, is

asymptotically efficient, whereas the SIC is not.

In practical forecasting we usually report and examine both AIC and SIC.

Most often they select the same model. When they don’t, and despite the

theoretical asymptotic efficiency property of AIC, this author recommends

use of the more parsimonious model selected by the SIC, other things equal.

This accords with the parsimony principle of Chapter 2 and with the results of

studies comparing out-of-sample forecasting performance of models selected

by various criteria.

The AIC and SIC have enjoyed widespread popularity, but they are not

universally applicable, and we’re still learning about their performance in

specific situations. However, the general principle that we need somehow to

inflate in-sample loss estimates to get good out-of-sample loss estimates is

universally applicable.

The versions of AIC and SIC introduced above – and the claimed op-

timality properties in terms of out-of-sample forecast MSE – are actually

specialized to the Gaussian case, which is why they are written in terms of

minimized SSR’s rather than maximized lnL’s.2 More generally, AIC and

SIC are written not in terms of minimized SSR’s, but rather in terms of

2Recall that in the Gaussian case SSR minimization and lnL maximization are equivalent.
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maximized lnL’s. We have:

AIC = −2lnL+ 2K

and

SIC = −2lnL+KlnT.

These are useful for any model estimated by maximum likelihood, Gaussian

or non-Gaussian.

15.2 All-Subsets Model Selection II: Cross Validation

Cross validation (CV) proceeds as follows. Consider selecting among J mod-

els. Start with model 1, estimate it using all data observations except the first,

use it to predict the first observation, and compute the associated squared

prediction error. Then estimate it using all observations except the second,

use it to predict the second observation, and compute the associated squared

error. Keep doing this – estimating the model with one observation deleted

and then using the estimated model to predict the deleted observation – un-

til each observation has been sequentially deleted, and average the squared

errors in predicting each of the T sequentially deleted observations. Repeat

the procedure for the other models, j = 2, ..., J , and select the model with

the smallest average squared prediction error.

Actually this is “T−fold” CV, because we split the data into T parts (the

T individual observations) and predict each of them. More generally we can

split the data into M parts (M < T ) and cross validate on them (“M−fold”

CV). As M falls, M -fold CV eventually becomes consistent. M = 10 often

works well in practice.

It is instructive to compare SIC and CV, both of which have the oracle

property. SIC achieves it by penalizing in-sample residual MSE to obtain

an approximately-unbiased estimate of out-of-sample MSE. CV, in contrast,
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achieves it by directly obtaining an unbiased estimated out-of-sample MSE.

CV is more general than information criteria insofar as it can be used even

when the model degrees of freedom is unclear. In addition, non-quadratic loss

can be introduced easily. Generalizations to time-series contexts are available.

15.3 Stepwise Selection

All-subsets selection, whether by AIC, SIC or CV, quickly gets hard as there

are 2K subsets of K regressors. Other procedures, like the stepwise selection

procedures that we now introduce, don’t explore every possible subset. They

are more ad hoc but very useful.

15.3.1 Forward

Algorithm:

– Begin regressing only on an intercept

– Move to a one-regressor model by including that variable with the small-

est t-stat p-value

– Move to a two-regressor model by including that variable with the small-

est p-value

– Move to a three-regressor model by including that variable with the

smallest p-value

Often people use information criteria or CV to select from the stepwise

sequence of models. This is a “greedy algorithm,” producing an increasing

sequence of candidate models. Often people use information criteria or CV

to select from the stepwise sequence of models. No guaranteed optimality

properties of the selected model.

“forward stepwise regression”

– Often people use information criteria or cross validation to select from

the stepwise sequence of models.



454 CHAPTER 15. SELECTION, SHRINKAGE, AND DISTILLATION

15.3.2 Backward

Algorithm:

– Start with a regression that includes all K variables

– Move to a K−1 variable model by dropping the variable with the largest

t-stat p-value

– Move to a K−2 variable model by dropping the variable with the largest

p-value

Often people use information criteria or CV to select from the stepwise

sequence of models. This is a “greedy algorithm,” producing a decreasing

sequence of candidate models. Often people use information criteria or CV

to select from the stepwise sequence of models. No guaranteed optimality

properties of the selected model.

15.4 One-Shot Estimation: Bayesian Shrinkage

Shrinkage is a generic feature of Bayesian estimation. The Bayes rule under

quadratic loss is the posterior mean, which is a weighted average of the MLE

and the prior mean,

β̂bayes = ω1β̂MLE + ω2β0,

where the weights depend on prior precision. Hence the the Bayes rule pulls,

or “shrinks,” the MLE toward the prior mean.

A classic shrinkage estimator is ridge regression,,3

β̂ridge = (X ′X + λI)−1X ′y.

λ → 0 produces OLS, whereas λ → ∞ shrinks completely to 0. λ can be

chosen by CV. (Notice that λ can not be chosen by information criteria,

as K regressors are included regardless of λ. Hence CV is a more general

3The ridge regression estimator can be shown to be the posterior mean for a certain prior and likelihood.
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selection procedure, useful for selecting various “tuning parameters” (like λ)

as opposed to just numbers of variables in hard-threshold procedures.

15.5 One-Shot Estimation: Selection and Shrinkage

15.5.1 Penalized Estimation

Consider the penalized estimator,

β̂PEN = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

|βi|q
 ,

or equivalently

β̂PEN = argminβ

T∑
t=1

(
yt −

∑
i

βixit

)2

s.t.
K∑
i=1

|βi|q ≤ c.

Concave penalty functions non-differentiable at the origin produce selection.

Smooth convex penalties produce shrinkage. Indeed one can show that taking

q → 0 produces subset selection, and taking q = 2 produces ridge regression.

Hence penalized estimation nests those situations and includes an intermedi-

ate case (q = 1) that produces the lasso, to which we now turn.

15.5.2 The Lasso

The lasso solves the L1-penalized regression problem of finding

β̂LASSO = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

|βi|


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or equivalently

β̂LASSO = argminβ

T∑
t=1

(
yt −

∑
i

βixit

)2

s.t.
K∑
i=1

|βi| ≤ c.

Ridge shrinks, but the lasso shrinks and selects. Figure ?? says it all. No-

tice that, like ridge and other Bayesian procedures, lasso requires only one

estimation. And moreover, the lasso uses minimization problem is convex

(lasso uses the smallest q for which it is convex), which renders the single

estimation highly tractable computationally.

Lasso also has a very convenient d.f. result. The effective number of

parameters is precisely the number of variables selected (number of non-

zero β’s). This means that we can use info criteria to select among “lasso

models” for various λ. That is, the lasso is another device for producing an

“increasing” sequence of candidate models (as λ increases). The “best” λ can

then be chosen by information criteria (or cross-validation, of course).

Elastic Net

β̂EN = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ

K∑
i=1

(
α|βi|+ (1− α)β2

i

)
• A mixture of Lasso and Ridge regression; that is, it combines L1 and L2

penalties.

• Unlike Lasso, it moves strongly correlated predictors in or out of the

model together, hopefully producing improving prediction accuracy rel-

ative to Lasso.

• Unlike Lasso, there are two tuning parameters in the elastic net λ and α.
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Figure 15.1: Lasso and Ridge Comparison
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For α = 1 elastic net turns into a Lasso model, For α = 0 it is equivalent

to ridge regression.

Adaptive Lasso

β̂ALASSO = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

wi|βi|

 ,

where wi = 1/β̂νi , β̂i is the OLS estimate, and ν > 0.

• Every parameter in the penalty function is weighted differently, in con-

trast to the “regular” Lasso.

• The weights are calculated by OLS.

• Oracle property.

Adaptive Elastic Net

β̂AEN = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ

K∑
i=1

wi
(
α|βi|+ (1− α)β2

i

) ,

where wi = 1/β̂νi , β̂i is the OLS estimate, and ν > 0.

• A combination of elastic net and adaptive Lasso.

• Oracle property.

15.6 Distillation: Principal Components

15.6.1 Distilling “X Variables” into Principal Components

Data Summarization. Think of a giant (wide) X matrix and how to “distill”

it.
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X ′X eigen-decomposition:

X ′X = V D2V ′

The jth column of V , vj, is the jth eigenvector of X ′X

Diagonal matrix D2 contains the descending eigenvalues of X ′X

First principal component (PC):

z1 = Xv1

var(z1) = d2
1/T

(maximal sample variance among all possible l.c.’s of columns of X)

In general:

zj = Xvj ⊥ zj′, j
′ 6= j

var(zj) ≤ d2
j/T

15.6.2 Principal Components Regression

The idea is to enforce parsimony with little information loss by regressing not

on the full X, but rather on the first few PC’s of X. We speak of “Principal

components regression” (PCR), or “Factor-Augmented Regression”.

Ridge regression and PCR are both shrinkage procedures involving PC’s.

Ridge effectively includes all PC’s and shrinks according to sizes of eigenvalues

associated with the PC’s. PCR effectively shrinks some PCs completely to

zero (those not included) and doesn’t shrink others at all (those included).

15.7 Exercises, Problems and Complements

1. Information criteria in time-series environments.

This chapter, and hence it’s discussion of information criteria, empha-

sizes cross-section environments. We motivated SIC and AIC in terms

of out-of-sample forecast MSE. Everything goes through in time-series
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environments, but in time series there is also a horizon issue. SIC and

AIC are then linked to 1-step-ahead out-of-sample forecast MSE. Mod-

ifications for multi-step time-series forecasting are also available.

15.8 Notes


