
Chapter 4

Forecast Model Building and Use

It has been said that “It’s difficult to make predictions, especially about the

future.” This quip is funny insofar as all predictions are about the future.

But actually they’re not. Prediction is a major topic even in cross-sections, in

which there is no temporal aspect. In this chapter we consider cross-section

prediction.

4.1 Cross-Section Prediction

The environment is:

yi = x′iβ + εi, i = 1, ..., N

εi ∼ iid D(0, σ2).

In cross sections, everything is easy. That is, cross-section prediction simply

requires evaluating the conditional expectation (regression relationship) at a

chosen value of x, x = x∗. Suppose, for example, that we know a regression

relationship between expenditure on restaurant meals (y) to income (x). If

we get new income data for a new household, we can use it to predict its

restaurant expenditures.
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4.1.1 Point Prediction

Continue to assume for the moment that we know the model parameters.

That is, assume that we know β and all parameters governing D.1

We immediately obtain point forecasts as:

E(yi|xi = x∗) = x∗′β.

4.1.2 Density Prediction for D Gaussian

Density forecasts, and hence interval forecasts, are a bit more involved, de-

pending on what we’re willing to assume. In any event the key is somehow

to account for disturbance uncertainty, the part of forecast uncertainty

arising from the fact that our forecasting models involve stochastic distur-

bances.

If D is Gaussian, then the density prediction is immediately

yi|xi = x∗ ∼ N(x∗′β, σ2). (4.1)

We can calculate any desired interval forecast from the density forecast.

For example, a 95% interval would be x∗′β ± 1.96σ.

Now let’s calculate the density and interval forecasts by a more round-

about simulation algorithm that will be very useful in more complicated (and

realistic) cases.

1. Take R draws from the disturbance density N(0, σ2).

2. Add x∗′β to each disturbance draw.

3. Form a density forecast by fitting a density to the output from step 2.

4. Form an interval forecast (95%, say) by sorting the output from step 2

to get the empirical cdf, and taking the left and right interval endpoints

1Note that the mean and variance are in general insufficient to characterize a non-Gaussian D.



4.1. CROSS-SECTION PREDICTION 79

as the the .025% and .975% values, respectively.

As R→∞, the algorithmic results coincide with those of 4.1.

4.1.3 Density Prediction for D Parametric Non-Gaussian

Our simulation algorithm still works for non-Gaussian D, so long as we can

simulate from D.

1. Take R draws from the disturbance density D.

2. Add x∗′β to each disturbance draw.

3. Form a density forecast by fitting a density to the output from step 2.

4. Form a 95% interval forecast by sorting the output from step 2, and

taking the left and right interval endpoints as the the .025% and .975%

values, respectively.2

Again as R→∞, the algorithmic results become arbitrarily accurate.

4.1.4 Making the Forecasts Feasible

The approaches above are infeasible in that they assume known parameters.

They can be made feasible by replacing unknown parameters with estimates.

For example, the feasible version of the point prediction is x∗′β̂. Similarly, to

construct a feasible 95% interval forecast in the Gaussian case we can take

x∗′β̂ ± 1.96σ̂, where σ̂ is the standard error of the regression (also earlier

denoted s).

2Note that, now that we have in general abandoned symmetry, the prescribed method no longer necessarily
generates the shortest interval.
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4.1.5 Density Prediction for D Non-Parametric

Now assume that we know nothing about distribution D, except that it has

mean 0. In addition, now that we have introduced “feasible” forecasts, we

will stay in that world.

1. Take R draws from the regression residual density (which is an approxi-

mation to the disturbance density) by assigning probability 1/N to each

regression residual and sampling with replacement.

2. Add x∗′β̂ to each draw.

3. Form a density forecast by fitting a density to the output from step 2.

4. Form a 95% interval forecast by sorting the output from step 2, and

taking the left and right interval endpoints as the the .025% and .975%

values, respectively.

As R→∞ and N →∞, the algorithmic results become arbitrarily accu-

rate.

4.1.6 Density Forecasts for D Nonparametric and Acknowledging

Parameter Estimation Uncertainty

Thus far we have accounted only for disturbance uncertainty in our feasible

density forecasts. Disturbance uncertainty reflects the fact that disturbance

realizations are inherently unpredictable. There is simply nothing that we

can do about disturbance uncertainty; it is present always and everywhere,

even if we were somehow to know the DGP and its parameters.

We now consider parameter estimation uncertainty. The coefficients

that we use to produce predictions are of course just estimates. That is, even

if we somehow know the form of the DGP, we still have to estimate its pa-

rameters. Those estimates are subject to sampling variability, which makes
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an additional contribution to prediction errors. The “feasible” approach to

density forecasting sketched above still fails to acknowledge parameter es-

timation uncertainty, because it treats “plugged-in” parameter estimates as

true values, ignoring the fact that they are only estimates and hence subject

to sampling variability. Parameter estimation uncertainty is often ignored,

as its contribution to overall forecast MSE can be shown to vanish unusually

quickly as sample size grows (See EPC 1). But it impacts forecast uncertainty

in small samples and hence should not be ignored in general.

1. Take R approximate disturbance draws by assigning probability 1/N to

each regression residual and sampling with replacement.

2. Take R draws from the large-N sampling density of β̂, namely

β̂OLS ∼ N(β, σ2(X ′X)−1),

as approximated by N(β̂, σ̂2(X ′X)−1).

3. To each disturbance draw from 1 add the corresponding x∗′β̂ draw from

2.

4. Form a density forecast by fitting a density to the output from step 3.

5. Form a 95% interval forecast by sorting the output from step 3, and

taking the left and right interval endpoints as the the .025% and .975%

values, respectively.

As R→∞ and N →∞, we get precisely correct results.

4.1.7 Incorporating Heteroskedasticity

We will illustrate for the Gaussian case without parameter estimation uncer-

tainty, using an approach that closely parallel’s White’s test for heteroskedas-
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ticity. Recall the feasible density forecast,

yi|xi = x∗ ∼ N(x∗′β̂, σ̂2).

Now we want to allow for the possibility that σ̂2 varies with xi.

1. Regress by OLS: yi → xi and save the residuals ei.

2. Regress e2
i → xi. Call the estimated coefficient vector γ̂.

3. Form the density forecast as

yi|xi = x∗ ∼ N(x∗′β̂, σ̂2(x∗)),

where σ̂2(x∗) = x∗′γ̂ is the fitted value from the regression in step 2

evaluated at x∗.

One could of course run regression 1 by weighted least squares (WLS)

rather than OLS using the σ̂2(x∗) as weights, but the efficiency gains in

estimating β are not likely to produce large additional improvements in cali-

bration of density and interval forecasts. The key is to allow the disturbance

variance to adapt to x∗ when forming forecasts, quite apart from whether

they are centered at x∗′β̂OLS or x∗′β̂WLS.

4.2 Wage Prediction Conditional on Education and Ex-

perience

4.2.1 The CPS Dataset

We will examine the CPS wage dataset, containing data on a large cross

section of individuals on wages, education, experience, sex, race and union

status. For a detailed description see Appendix E. For now we will use only

wage, education and experience.
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Figure 4.1: Distributions of Wages and Log Wages

Figure 4.2: Histograms for Wage Covariates
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Figure 4.3: Wage Regression on Education and Experience

– Basic features of wage, education and experience data.

In Figures 4.1 and 4.2 we show histograms and statistics for potential

determinants of wages. Education (EDUC) and experience (EXPER) are

standard continuous variables, although we measure them only discretely (in

years).

4.2.2 Regression

– Linear regression of log wage on predictors (education and experience).

Recall our basic wage regression,

LWAGE → c, EDUC,EXPER,

shown in Figure 4.3. Both explanatory variables are highly significant, with

expected signs. In table ?? consider a linear versus a quadratic model.

Even though the quadratic regression coefficients are statistically signifi-

cant, we see only an extremely small improvement in adj. R2 and RMSE. We
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also consider the histograms for the two models, in Figure ??.

We can see that the densities of residuals are almost identical, perhaps

that those from the quadratic model are ever so slightly less skewed. Since

we believe in the parsimony principle however, we will restrict ourselves to

a linear model in the absence of overwhelming evidence in favor of a non-

linear model. NOTE: There are many more nonlinear models to try besides

quadratic! See section 4.3 for possible further extensions.

Throughout we will use the “best” estimated log wage model for feasible

prediction of wage, for (EDUC, EXPER) = (10, 1) and (EDUC, EXPER) =

(14, 20). (NOTE: The model is for log wage, but the forecasts are for wage.)

4.2.3 Point Prediction by Exponentiating vs. Simulation

An obvious point forecast of WAGE can be obtained by exponentiating

a forecast of LWAGE. But there are issues. In particular, if lnyt+h,t is

an unbiased forecast of lnyt+h, then exp(lnyt+h,t) is a biased forecast of

yt+h.
3 More generally, if (f(y))t+h,t is an unbiased forecast of (f(y))t+h, then

f−1((f(y))t+h,t) is a biased forecast of yt+h, for arbitrary nonlinear function

f , because the expected value of a nonlinear function of a random variable

does not equal the nonlinear function of the expected value, a result known

as Jensen’s inequality.4

Various analytic “bias corrections” have been proposed, but they rely on

strong and unnecessary assumptions. The modern approach is simulation-

based. Using simulation, simply build up the density forecast of the object

of interest (e.g., WAGE rather than lnWAGE), the sample mean of which

across simulations is consistent for the population conditional mean. The

bias correction is done automatically!

3A forecast is unbiased if its mean error is zero. Other things equal, unbiasedness is desirable.
4As the predictive regression R2 → 1, however, the bias vanishes. Why?
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Figure 4.4: Predicted densities for wage under the assumption that residuals are homoskedas-
tic and Gaussian, abstracting from parameter uncertainty. The model is in logs and then
exponentiated The top graph is estimated density of wage with 10 years of education, 1
year of experience. The bottom graph is the same for 14 years of education, 20 years of
experience. The red vertical lines indicate 95% CI.

4.2.4 Density Prediction for D Gaussian

We now apply the methods from section 4.1.2 to the linear model. To op-

erationalize that algorithm, we must first make an estimator of σ2 and β.

β̂ is taken directly as the OLS regression coefficients, and σ̂ can be taken

as the residual standard error. With those plug-in estimators found, we can

follow the algorithm directly. Since we are in a Gaussian environment, recall

we could find a 95% CI by taking x∗′β ± 1.96σ̂. However, in more complex

environments, we will have to take the CI directly from the simulated data,

so we will do that here by sorting the sample draws and taking the left and

right endpoints to be the .025% and .975% values, respectively. This yields

the output from figure 4.4.

Two things are of particular note here. First is that, as expected, the

density prediction for the individual with more education and experience has

a much higher mean. Second is that the CI for individual 2 is much wider

than that of individual 1, or similarly that the density prediction has much

higher variance. This is perhaps surprising, since we were in a case with
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homoskedasticity. In fact this is one of the costs of working with a log-linear

model for wages:

log(y) = x′β + ε, ε ∼ N(0, σ2)

y = exp(x′β) exp(ε)

⇒ V[y] = [exp(x′β)]
2 V[exp(ε)]

Thus even with homoskedasticity in logs, the variance of the level yt will

depend on x.

4.2.5 Density Forecasts for D Gaussian and Acknowledging Pa-

rameter Estimation Uncertainty

We are still in a sufficiently simple world that we may follow directly the

algorithm above. A quick way to think about the algorithm of the previous

section is the following: Since residuals are Gaussian, y is Gaussian. So to

compute a density prediction of y, all we really need is to estimate its mean

and covariance. The mean is given directly as the conditional mean from the

model. For the covariance:

V[y] = V[x′β + ε]

= V[x′β] + V[ε]

Since the previous section did not allow for parameter estimation uncer-

tainty, the first term in that sum was zero. We will now accurately estimate

that first term and include it in our density prediction. This idea is explored

more in the EPC’s.

Having Gaussian disturbances means that the distribution of β̂ is precisely
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Gaussian, and as above we knows its mean and covariance: β and σ2(X ′X)−1.

To operationalize this, we will make draws from N(β̂, σ̂2(X ′X)−1). Con-

cretely, our algorithm is the following:

1. Take R draws from the estimated disturbance density N(0, σ̂2).

2. Take R draws of β from the estimated parameter sampling distribution

N(β̂, σ̂2(X ′X)−1).

3. Add the disturbance draw from step 1 to the draw of x∗
′
β, where β is

drawn as in step 2.

4. Exponentiate each draw to turn the draw of log wage into a draw for

wage.

5. Form the density forecast by fitting a density to the output.

6. Form a 95% interval forecast by sorting the output, and taking the left

and right interval endpoints as the .025% and .975% values, respectively.

Following this algorithm yields the output of figure 4.5. We see that these

density forecasts are nearly identical to those without parameter uncertainty.

This is to be expected once we consider the estimated covariance matrix of

β, which we find has very small variance:

V[β̂] =


0.00567 -0.000357 -4.19e-05

-0.000357 2.55e-05 1.22e-06

-4.19e-05 1.22e-06 1.35e-06


4.2.6 Density Forecasts for D Gaussian, Acknowledging Parame-

ter Estimation Uncertainty, and Allowing for Heteroskedas-

ticity

For this section we find that we must work a little bit harder. There are

two separate difficulties that are important to get correct: The first is an
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Figure 4.5: Predicted densities for wage under the assumption that residuals are homoskedas-
tic and Gaussian. Here parameter uncertainty is accounted for in the density of wage. The
model is in log wage and then exponentiated. The top graph is estimated density of wage
with 10 years of education, 1 year of experience. The bottom graph is the same for 14 years
of education, 20 years of experience. The red vertical lines indicate 95% CI.

appropriate drawing of the sampled residuals, the second is an appropriate

drawing of the parameters.

First, the parameter estimation uncertainty. The covariance matrix we es-

timated above, σ2(X ′X)−1, is no longer valid in the presence of heteroskedas-

ticity. Rather:

β̂OLS = (X ′X)−1X ′Y = β + (X ′X)−1X ′ε

⇒ β̂ ∼ N(β, (X ′X)−1X ′ΩX(X ′X)−1)
(4.2)

Under homoskedasticity, Ω = σ2I and so this covariance matrix dramati-

cally simplifies. This is no longer the case under heteroskedasticity. In this

environment we will find the distinction to be of little numerical importance,

but for other datasets it will be of dramatic importance.

Of course, in the presence of heteroskedasticity, we may prefer to instead

conduct weighted least squares instead of OLS. Recall the WLS estimator is

β̂WLS = (X ′ΣX)−1X ′ΣY
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Here Σ is any diagonal weighting matrix. A popular choice is of course Ω−1,

as this choice is efficient, where this matrix can be estimated by a number of

two-stage processes. The asymptotic covariance matrix of the WLS estimator

is then

β̂WLS = β + (X ′Ω−1X)−1X ′Ω−1ε

⇒ β̂WLS ∼ N(β, (X ′Ω−1X)−1X ′Ω−1ΩΩ−1X(X ′Ω−1)−1)

⇒ β̂WLS ∼ N(β, (X ′Ω−1X)−1)

(4.3)

Thus βWLS is simultaneously a better estimator than β̂OLS and with an

easier covariance matrix to estimate. For this reason we will proceed using

β̂WLS, and make draws from the above. To do this, we must select a specific

two-stage process, as discussed above. We will discuss this in the course of the

estimation of the residual density. This is done via the following algorithm:

1. Regress by OLS: yi → xi and save the residuals.

2. Regress e2
i → xi. Call the estimated coefficient vector γ̂.

3. Construct the vector of heteroskedasticities σ̂2(xi) = x
′

iγ̂, and set Ω̂ =

diag(σ̂2(xi)).

• Use Ω̂ to conduct WLS regression.

4. Take R draws of the residuals from N(0, σ̂2(x∗))

5. Take R draws of β from N(β̂, (X ′Ω̂−1X)−1)

6. Add the disturbance draw from step 4 to the draw of x∗
′
β, where β is

drawn as in step 5.

7. Exponentiate each draw to turn the draw of log wage into a draw for

wage.

8. Form the density forecast by fitting a density to the output.
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Figure 4.6: Predicted densities for wage under the assumption that residuals are het-
eroskedastic and Gaussian. Here parameter uncertainty is accounted for in the density of
wage. The model is in log wage and then exponentiated. The top graph is estimated density
of wage with 10 years of education, 1 year of experience. The bottom graph is the same for
14 years of education, 20 years of experience. The red vertical lines indicate 95% CI.

9. Form a 95% interval forecast by sorting the output, and taking the left

and right interval endpoints as the .025% and .975% values, respectively.

Notice one could argue with our above procedure: We took residuals from

the OLS regression to make the density prediction. There is certainly an

argument to be made from re-taking residuals from the WLS regression and

re-estimating the heteroskedasticity covariance matrix from there. However,

the above will still be a consistent procedure (since the covariance matrix

estimated is HAC-consistent), and since we have a surplus of observations we

are unlikely to see a numerical difference between the two. The outputs from

this procedure can be found in figure 4.6.

The CI interval for the lower wage, lower educated individual shrunk dra-

matically, while the CI for the (14, 20) individual did not change noticeably.

This is explainable by the fact that the average number of years of educa-

tion for our dataset is 13.1, and the average number of years of experience is

19.2. Thus the (14, 20) individual is close to the average. Since the form of

heteroskedasticity is measured to be linear in this algorithm, and homoskedas-
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Figure 4.7: Predicted densities for wage under the assumption that residuals are homoskedas-
tic, abstracting from parameter uncertainty. The density of residuals is now estimated
nonparametrically. The model is in log wages and then exponentiated. The top graph is
estimated density of wage with 10 years of education, 1 year of experience. The bottom
graph is the same for 14 years of education, 20 years of experience. The red vertical lines
indicate 95% CI.

ticity will set the variance of each individual to be approximately the mean

variance of the dataset, it is expected that the mean individual will have

approximately the same variance under homoskedasticity and heteroskedas-

ticity.

4.2.7 Density Prediction for D Nonparametric

In this section we will make density predictions for our dataset dropping the

assumption that disturbances are Gaussian. For now we will assume that

we can estimate parameters with no uncertainty and that disturbances are

homoskedastic. Here we may follow the exact algorithm of 4.1.5, with the

added step that we exponentiate each draw to make a draw for wage from a

draw for log wage. The yielded output can be found in 4.7.

Here we find that the nonparametric density estimates are quite similar

to those found assuming D Gaussian. This suggests that our assumption of

Gaussian disturbances was well-grounded. We can examine this further by
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Figure 4.8: Nonparametric Density of Disturbances. Red overlaid line is Gaussian.

directly observing the nonparametric density of the disturbances to the log

wages, seen in figure 4.8. These are some very Gaussian disturbances.

4.2.8 Density Forecasts for D Nonparametric and Acknowledging

Parameter Estimation Uncertainty

Here we will blend the algorithms of the previous sections. Even though hav-

ing non-Gaussian disturbances no longer assures that β̂ is precisely Gaussian,

by CLT the normal distribution remains the large-N approximation. Thus,

we may construct the algorithm exactly as in section 4.1.6, as before with

the added step of exponentiating each log wage draw to get a draw for wage.

This yields the output in figure 4.9.

Comparing the results from nonparametric estimation, and the results

from just incorporating parameter estimation uncertainty, we should be un-

surprised by this: nonparametric estimation told us that our Gaussian distur-

bances assumption was well-grounded, and our initial parameter uncertainty

estimation results told us our parameter estimates were being measured quite

accurately. Thus the output from this section very closely resembles that of

our very first density predictions, with D Gaussian and no parameter uncer-

tainty.
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Figure 4.9: Predicted densities for wage under the assumption that residuals are homoskedas-
tic. Here parameter uncertainty is accounted for in the density of wage, and the density of
residuals is now estimated nonparametrically. The model is in log wage and then exponen-
tiated. The top graph is estimated density of wage with 10 years of education, 1 year of
experience. The bottom graph is the same for 14 years of education, 20 years of experience.
The red vertical lines indicate 95% CI.

4.2.9 Modeling Directly in Levels

Up until now our model has been

log(y) = x′β + ε

From this model we construct density predictions for y by making draws of

log(y) and exponentiating. We now switch to the following model:

y = x′β + ε

We will now re-explore the above analysis in this context. The first thing

we will notice is that density predictions under the assumption of Gaussian

disturbances will generally perform quite poorly, because the disturbances to

the level model are quite clearly non-Gaussian. See figure 4.10.

We therefore skip to a nonparametric density prediction, incorporating

parameter uncertainty - although as before we will find that parameter un-
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Figure 4.10: Non-Gaussian Residuals

certainty is quite small. The resulting output is in figure 4.11

We immediately notice a problem for individual 1: The 95% CI includes

negative values for wage! This is inherently a problem of working directly in

levels when modeling a variable for which only positive values make sense.
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Figure 4.11: Predicted densities for wage under the assumption that residuals are ho-
moskedastic. Here parameter uncertainty is accounted for in the density of wage, and the
density of residuals is now estimated nonparametrically. The model is directly in wages The
top graph is estimated density of wage with 10 years of education, 1 year of experience. The
bottom graph is the same for 14 years of education, 20 years of experience. The red vertical
lines indicate 95% CI.

4.3 Non-Parametric Estimation of Conditional Mean

Functions

4.3.1 Global Nonparametric Regression: Series

In the bivariate case we can think of the relationship as

yt = g(xt, εt),

or slightly less generally as

yt = f(xt) + εt.

First consider Taylor series expansions of f(xt). The linear (first-order)

approximation is

f(xt) ≈ β1 + β2x,
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and the quadratic (second-order) approximation is

f(xt) ≈ β1 + β2xt + β3x
2
t .

In the multiple regression case, the Taylor approximations also involves in-

teraction terms. Consider, for example, f(xt, zt):

f(xt, zt) ≈ β1 + β2xt + β3zt + β4x
2
t + β5z

2
t + β6xtzt + ....

Such interaction effects are also relevant in situations involving dummy

variables. There we capture interactions by including products of dummies.5

Now consider Fourier series expansions. We have

f(xt) ≈ β1 + β2sin(xt) + β3cos(xt) + β4sin(2xt) + β5cos(2xt) + ...

One can also mix Taylor and Fourier approximations by regressing not only

on powers and cross products (“Taylor terms”), but also on various sines and

cosines (“Fourier terms”). Mixing may facilitate parsimony.

The ultimate point is that so-called “intrinsically non-linear” models are

themselves linear when viewed from the series-expansion perspective. In prin-

ciple, of course, an infinite number of series terms are required, but in practice

nonlinearity is often quite gentle so that only a few series terms are required

(e.g., quadratic).

The Curse of Dimensionality

Let p be the adopted expansion order. Things quickly get out of hand as p

grows, for fixed N .

5Notice that a product of dummies is one if and only if both individual dummies are one.
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Bandwidth Selection and the Bias-Variance Tradeoff

For fixed N , smaller p reduces variance but increases bias, larger p reduces

bias but inflates variance.

Good things happen as p→∞ while p/N → 0.

p can be chosen by any of the criteria introduced earlier.

4.3.2 Local Nonparametric Regression: Nearest-Neighbor

Here we introduce the idea of local regression based on “nearest neighbors”.

It is a leading example of a local smoother. The basic model is

yt = g(xt) + εt.

Unweighted Locally-Constant Regression

We want to fit (predict) y for an arbitrary x∗. We use the x variables in a

neighborhood of x∗, n(x∗). In particular we use the PT nearest neighbors. PT

can be chosen by CV. We find the PT nearest neighbors using the Euclidean

norm:

λ(x∗, x∗PN ) = [ΣK
k=1(x

∗
PNk
− x∗k)2]

1
2 .

The fitted value is then

ŷ(x∗) =
1

PN

∑
j∈n(x∗)

yj

This “nearest-neighbor” idea is not only simple, but tremendously impor-

tant for prediction. If we want to predict y for an arbitrary x∗, it is natural

to examine and average the y’s that happened for close x’s.
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Weighted Locally-Linear Regression

We will use the “tri-cube” neighborhood weight function:

vi(xi, x
∗, x∗PN ) = C

(
λ(xi, x

∗)

λ(x∗, x∗PN )

)
,

where

C(u) =

{
(1− u3)3 for u < 1

0 otherwise

We then obtain the fitted value by weighted linear regression:

ŷ∗ = ĝ(x∗) = x∗′β̂

where

β̂ = argmin[ΣN
i=1vi(yi − x′iβ)2]

Good things happen as PN →∞ while PN/N → 0.

Figure 4.12: Locally Weighted Regression
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Figure 4.13: Locally Weighted Regression, Near the Edge

“Robustness Iterations”

Consider the initial fit to be “robusness iteration 0”. The define the robust-

ness weight at iteration 1:

ρi
(1) = S

(
ei

(0)

6h

)
where

ei
(0) = yi − ŷ(0)

i

h = med |ei(0)|

S(u) =

{
(1− u2)2 for|u| < 1

0 otherwise

That is, we use bi-square robustness weighting, with bigger observations with

bigger absolute residuals at iteration (0) downweighted progressively more,

and observations with absolute residuals greater than six times the median

absolute residual completely eliminated. We then obtain the fitted value by

doubly-weighted linear regression:

ŷ
∗(1)
i = ĝ(1)(x∗) = x∗′β̂(1)
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where

β̂(1) = argmin[ΣN
i=1 ρ

(1)
i vi(yi − xi′β)

2
].

Then we continue iterating if desired.

We speak of “robust weighted locally-linear regression”. Extensions to

locally-polynomial regression are immediate.

Figure 4.14: Locally Weighted Regression, Robustness Weighting for Outliers

4.3.3 Forecasting Perspectives

On Global vs. Local Smoothers for Forecasting

In cross-section environments, both global and local smoothers are useful for

prediction. Local smoothers are perhaps more flexible and more popular in

cross sections. x∗ is usually interior to the observed x’s, so nearest-neighbor

approaches feel natural.

In time-series environments both global and local smoothers can be useful

for prediction. But there’s a twist. Economic time-series data tend to trend,

so that x∗ can often be exterior to the observed x’s. That can create serious

issues for local smoothers, as, for example, there may be no nearby “nearest

neighbors”! Polynomial and Fourier global smoothers, in contrast, can be

readily extrapolated for short-horizon out-of-sample forecasts. They have
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issues of their own for long-horizon forecasts, however, as, for example, all

polynomials diverge either to +∞ or −∞ when extrapolated far enough.

Nearest Neighbors as a General Forecasting Method

Notice how natural and general NN is for forecasting. If we want to know

what y is likely to go with x∗ an obvious strategy is to look at the y’s that

went with x’s nearest x∗. And the NN idea can be used to produce not just

point forecasts (e.g., by fitting a constant to the y’s, but moreover to produce

density forecasts (by fitting a distribution to the y’s). The NN idea is also

equally relevant and useful in time series.

4.4 Wage Prediction, Continued

4.4.1 Point Wage Prediction

4.4.2 Density Wage Prediction

4.5 Exercises, Problems and Complements

1. Additional insight on parameter-estimation uncertainty.

Consider a simple homogeneous linear regression with zero-mean vari-

ables and Gaussian disturbances

yt = βxt + εt

εt

iid

∼ N(0, σ2).

It can be shown that

var(β̂) =
σ2∑T
t=1 x

2
t

,
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and that β̂ and ε are independent. Now consider an operational point

prediction of y given that x = x∗, ŷ = β̂x∗, and consider the variance of

the corresponding forecast error. We have

var(e) = var(y − ŷ) = var((βx∗ + ε)− β̂x∗) = σ2 +
σ2∑N
i=1 x

2
i

x∗2.

In this expression, the first term accounts for for the usual disturbance

uncertainty, and the second accounts for parameter estimation uncer-

tainty. Taken together, the results suggest an operational density fore-

cast that accounts for parameter uncertainty,

yi |xi = x∗ ∼ N

(
β̂x∗, σ̂2 +

σ̂2∑N
i=1 x

2
i

x∗2

)
,

from which interval forecasts may be constructed as well. Note that

when parameter uncertainty exists, the closer x∗ is to the mean x (0), the

smaller is the prediction-error variance. Note also that as the sample size

gets large,
∑N

i=1 x
2
t gets large as well, so the adjustment for parameter

estimation uncertainty vanishes (in fact very quickly, like 1/N), and

the density forecast collapses to the feasible Gaussian density forecast

introduced in the text.

The ideas sketched here can be shown to carry over to more compli-

cated situations (e.g., non-Gaussian, y and x don’t necessarily have zero

means, more than one regressor, etc.); it remains true that the closer is

x to its mean, the tighter is the prediction interval.

2. Prediction intervals via quantile regression.

Granger, C.W.J., H. White, and M. Kamstra (1987), “Interval Forecast-

ing: An Analysis Based Upon ARCH − Quantile Estimators,” Journal

of Econometrics. White (1990) allows for nonlinear conditional quantile

regression via neural nets.
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3. In-sample vs. out-of-sample prediction.

In cross sections all prediction has an “in-sample” flavor insofar as the

X∗ for which we want to forecast y is typically interior to the historical

X. In time series, in contrast, future times are by definition exterior to

past times.

4. Model uncertainty.

We have thus far emphasized disturbance uncertainty and parameter

estimation uncertainty (which is due in part to data uncertainty, which

in turn has several components).

A third source of prediction error is model uncertainty. All our mod-

els are intentional simplifications, and the fact is that different models

produce different forecasts. Despite our best intentions, and our use of

powerful tools such as information criteria, we never know the DGP, and

surely any model that we use is not the DGP.

5. “Data-rich” environments.

“Big data.” “Wide data,” for example, corresponds to K large relative

to T . In extreme cases we might even have K much larger than T . How

to get a sample covariance matrix for the variables in X? How to run a

regression? One way or another, we need to recover degrees of freedom,

so dimensionality reduction is key, which leads to notions of variable

selection and “sparsity”, or shrinkage and “regularization”.

6. Neural Networks

Neural networks amount to a particular non-linear functional form as-

sociated with repeatedly running linear combinations of inputs through

non-linear ”squashing” functions. The 0-1 squashing function is useful

in classification, and the logistic function is useful for regression. The

neural net literature is full of biological jargon, which serves to obfuscate
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rather than clarify. We speak, for example, of a “single-output feedfor-

ward neural network with n inputs and 1 hidden layer with q neurons.”

But the idea is simple. If the output is y and the inputs are x’s, we write

yt = Φ(β0 +

q∑
i=1

βihit),

where

hit = Ψ(γi0 +
n∑
j=1

γijxjt), i = 1, ..., q

are the “neurons” (“hidden units”), and the ”activation functions” Ψ

and Φ are arbitrary, except that Ψ (the squashing function) is generally

restricted to be bounded. (Commonly Φ(x) = x.) Assembling it all, we

write

yt = Φ

(
β0 +

q∑
i=1

βiΨ

(
γi0 +

n∑
j=1

γijxjt

))
= f(xt; θ),

which makes clear that a neural net is just a particular non-linear func-

tional form for a regression model.

7. Trees

8. Kernel Regression

9. Regression Splines

Polynomial are global. Unattractive in that the fit at the end is influ-

enced by the data at beginning (for example).

Move to piecewise cubic (say). But it’s discontinuous at the join point(s)

(“knots”).

Move to continuous piecewise cubic; i.e., force continuity at the knots.

But it might have an unreasonable kink.
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Move to cubic spline. Forces continuity and continuity of first and second

derivatives at the knots. Nice! A polynomial of degree p spline has

continuous dth-order derivatives, d = 0, ..., p− 1. So, for example, linear

spline is piecewise linear, continuous but not differentiable at the knots.

– Linear Splines

– Constructing Cubic Splines

– Natural Cubic Splines

Extrapolates linearly beyond the left and right boundary knots. This

adds constraints (two at each end), recovering degrees of freedom and

hence allowing for more knots.

A cubic spline with K knots uses K + 4 degrees of freedom. A natural

spline with K knots uses K degrees of freedom.

– Knot Placement

You’d like more knots in rough areas of the function being estimated,

but of course you don’t know where those areas are, so it’s tricky.

Smoothing splines avoid that issue.

10. Smoothing Splines

min
{f∈F}

T∑
t=1

(yt − f(xt))
2 + λ

∫
f ′′(z)2dz

HP Trend does that:

min
{st}Tt=1

T∑
t=1

(yt − st)2 + λ

T−1∑
t=2

((st+1 − st)− (st − st−1))
2

The smoothing spline is a natural cubic spline. It has a knot at each

unique x value, but smoothness is imposed via λ. No need to choose

knot locations; instead just choose a single λ. Can be done by CV.
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There is an analytic formula giving effective degrees of freedom, so we

can specify d.f. rather than λ.

4.6 Notes

“LOWESS”


