Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/16056
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Golnaraghi, Sasan | - |
dc.contributor.author | Zangenehmadar, Zahra | - |
dc.contributor.author | Moselhi, Osama | - |
dc.contributor.author | Alkass, Sabah | - |
dc.date.accessioned | 2020-04-01T01:57:34Z | - |
dc.date.available | 2020-04-01T01:57:34Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1687-8086 | - |
dc.identifier.issn | 1687-8094 (e) | - |
dc.identifier.other | BBKH816 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/16056 | - |
dc.description | 11 tr. | vi |
dc.description.abstract | Productivity is described as the quantitative measure between the number of resources used and the output produced, generally referred to man-hours required to produce the final product in comparison to planned man-hours. Productivity is a key element in determining the success and failure of any construction project. Construction as a labour-driven industry is a major contributor to the gross domestic product of an economy and variations in labour productivity have a significant impact on the economy. Attaining a holistic view of labour productivity is not an easy task because productivity is a function of manageable and unmanageable factors. Compound irregularity is a significant issue in modeling construction labour productivity. Artificial Neural Network (ANN) techniques that use supervised learning algorithms have proved to be more useful than statistical regression techniques considering factors like modeling ease and prediction accuracy. In this study, the expected productivity considering environmental and operational variables was modeled. Various ANN techniques were used including General Regression Neural Network (GRNN), Backpropagation Neural Network (BNN), Radial Base Function Neural Network (RBFNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) to compare their respective results in order to choose the best method for estimating expected productivity. Results show that BNN outperforms other techniques for modeling construction labour productivity. | vi |
dc.language.iso | en | vi |
dc.publisher | Hindawi Publishing Corporation | vi |
dc.subject | Fuzzy systems | vi |
dc.subject | Learning theory | vi |
dc.subject | Measurement techniques | vi |
dc.subject | Productivity measurement | vi |
dc.subject | Machine learning | vi |
dc.subject | Statistical analysis | vi |
dc.subject | Earthmoving equipment | vi |
dc.subject | Model accuracy | vi |
dc.subject | Adaptive systems | vi |
dc.subject | Formwork | vi |
dc.title | Application of Artificial Neural Network(s) in Predicting Formwork Labour Productivity | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH816_TCCN_Application of Artificial Neural.pdf Giới hạn truy cập | Application of Artificial Neural Network(s) in Predicting Formwork Labour Productivity | 1.19 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.