Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/16056
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorGolnaraghi, Sasan-
dc.contributor.authorZangenehmadar, Zahra-
dc.contributor.authorMoselhi, Osama-
dc.contributor.authorAlkass, Sabah-
dc.date.accessioned2020-04-01T01:57:34Z-
dc.date.available2020-04-01T01:57:34Z-
dc.date.issued2019-
dc.identifier.issn1687-8086-
dc.identifier.issn1687-8094 (e)-
dc.identifier.otherBBKH816-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/16056-
dc.description11 tr.vi
dc.description.abstractProductivity is described as the quantitative measure between the number of resources used and the output produced, generally referred to man-hours required to produce the final product in comparison to planned man-hours. Productivity is a key element in determining the success and failure of any construction project. Construction as a labour-driven industry is a major contributor to the gross domestic product of an economy and variations in labour productivity have a significant impact on the economy. Attaining a holistic view of labour productivity is not an easy task because productivity is a function of manageable and unmanageable factors. Compound irregularity is a significant issue in modeling construction labour productivity. Artificial Neural Network (ANN) techniques that use supervised learning algorithms have proved to be more useful than statistical regression techniques considering factors like modeling ease and prediction accuracy. In this study, the expected productivity considering environmental and operational variables was modeled. Various ANN techniques were used including General Regression Neural Network (GRNN), Backpropagation Neural Network (BNN), Radial Base Function Neural Network (RBFNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) to compare their respective results in order to choose the best method for estimating expected productivity. Results show that BNN outperforms other techniques for modeling construction labour productivity.vi
dc.language.isoenvi
dc.publisherHindawi Publishing Corporationvi
dc.subjectFuzzy systemsvi
dc.subjectLearning theoryvi
dc.subjectMeasurement techniquesvi
dc.subjectProductivity measurementvi
dc.subjectMachine learningvi
dc.subjectStatistical analysisvi
dc.subjectEarthmoving equipmentvi
dc.subjectModel accuracyvi
dc.subjectAdaptive systemsvi
dc.subjectFormworkvi
dc.titleApplication of Artificial Neural Network(s) in Predicting Formwork Labour Productivityvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH816_TCCN_Application of Artificial Neural.pdf
  Giới hạn truy cập
Application of Artificial Neural Network(s) in Predicting Formwork Labour Productivity1.19 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.