Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/16195
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Yao, Gang | - |
dc.contributor.author | Wei, Fujia | - |
dc.contributor.author | Yang, Yang | - |
dc.contributor.author | Sun, Yujia | - |
dc.date.accessioned | 2020-04-01T09:54:09Z | - |
dc.date.available | 2020-04-01T09:54:09Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1687-8086 | - |
dc.identifier.issn | 1687-8094 (e) | - |
dc.identifier.other | BBKH914 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/16195 | - |
dc.description | 12 tr. | vi |
dc.description.abstract | Bugholes are surface imperfections that appear as small pits and craters on concrete surface after the casting process. The traditional measurement methods are carried out by in situ manual inspection, and the detection process is time-consuming and difficult. This paper proposed a deep-learning-based method to detect bugholes on concrete surface images. A deep convolutional neural network for detecting bugholes on concrete surfaces was developed, by adding the inception modules into the traditional convolution network structure to solve the problem of the relatively small size of input image (28 × 28 pixels) and the limited number of labeled examples in training set (less than 10 K). The effects of noise such as illumination, shadows, and combinations of several different surface imperfections in real-world environments were considered. From the results of image test, the proposed DCNN had an excellent bughole detection performance and the recognition accuracy reached 96.43%. By the comparative study with the Laplacian of Gaussian (LoG) algorithm and the Otsu method, the proposed DCNN had good robustness which can avoid the interference of cracks, color-differences, and nonuniform illumination on the concrete surface. | vi |
dc.language.iso | en | vi |
dc.publisher | Hindawi Publishing Corporation | vi |
dc.subject | International conferences | vi |
dc.subject | Research | vi |
dc.subject | Measurement methods | vi |
dc.subject | Machine learning | vi |
dc.subject | Deep learning | vi |
dc.subject | Photographs | vi |
dc.subject | Concrete | vi |
dc.subject | Artificial intelligence | vi |
dc.subject | Artificial neural networks | vi |
dc.subject | Concretes | vi |
dc.title | Deep-Learning-Based Bughole Detection for Concrete Surface Image | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH914_TCCN_ Deep-Learning-Based Bughole.pdf Giới hạn truy cập | Deep-Learning-Based Bughole Detection for Concrete Surface Image | 4.45 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.