Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/16195
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorYao, Gang-
dc.contributor.authorWei, Fujia-
dc.contributor.authorYang, Yang-
dc.contributor.authorSun, Yujia-
dc.date.accessioned2020-04-01T09:54:09Z-
dc.date.available2020-04-01T09:54:09Z-
dc.date.issued2019-
dc.identifier.issn1687-8086-
dc.identifier.issn1687-8094 (e)-
dc.identifier.otherBBKH914-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/16195-
dc.description12 tr.vi
dc.description.abstractBugholes are surface imperfections that appear as small pits and craters on concrete surface after the casting process. The traditional measurement methods are carried out by in situ manual inspection, and the detection process is time-consuming and difficult. This paper proposed a deep-learning-based method to detect bugholes on concrete surface images. A deep convolutional neural network for detecting bugholes on concrete surfaces was developed, by adding the inception modules into the traditional convolution network structure to solve the problem of the relatively small size of input image (28 × 28 pixels) and the limited number of labeled examples in training set (less than 10 K). The effects of noise such as illumination, shadows, and combinations of several different surface imperfections in real-world environments were considered. From the results of image test, the proposed DCNN had an excellent bughole detection performance and the recognition accuracy reached 96.43%. By the comparative study with the Laplacian of Gaussian (LoG) algorithm and the Otsu method, the proposed DCNN had good robustness which can avoid the interference of cracks, color-differences, and nonuniform illumination on the concrete surface.vi
dc.language.isoenvi
dc.publisherHindawi Publishing Corporationvi
dc.subjectInternational conferencesvi
dc.subjectResearchvi
dc.subjectMeasurement methodsvi
dc.subjectMachine learningvi
dc.subjectDeep learningvi
dc.subjectPhotographsvi
dc.subjectConcretevi
dc.subjectArtificial intelligencevi
dc.subjectArtificial neural networksvi
dc.subjectConcretesvi
dc.titleDeep-Learning-Based Bughole Detection for Concrete Surface Imagevi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH914_TCCN_ Deep-Learning-Based Bughole.pdf
  Giới hạn truy cập
Deep-Learning-Based Bughole Detection for Concrete Surface Image4.45 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.