Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18399
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorBaldo, Nicola-
dc.contributor.authorManthos, Evangelos-
dc.contributor.authorPasetto, Marco-
dc.date.accessioned2020-05-29T01:28:51Z-
dc.date.available2020-05-29T01:28:51Z-
dc.date.issued2018-
dc.identifier.issn1687 - 8086-
dc.identifier.otherBBKH1038-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18399-
dc.description"Hindawi Advances in Civil Engineering Volume 2018, Article ID 1650945, 17 pages https://doi.org/10.1155/2018/1650945"vi
dc.description.abstractThe current paper deals with the numerical prediction of the mechanical response of asphalt concretes for road pavements, using artificial neural networks (ANNs). The asphalt concrete mixes considered in this study have been prepared with a diabase aggregate skeleton and two different types of bitumen, namely, a conventional bituminous binder and a polymer-modified one. The asphalt concretes were produced both in a road materials laboratory and in an asphalt concrete production plant. The mechanical behaviour of the mixes was investigated in terms of Marshall stability, flow, quotient, and moreover by the stiffness modulus. The artificial neural networks used for the numerical analysis of the experimental data, of the feedforward type, were characterized by one hidden layer and 10 artificial neurons. The results have been extremely satisfactory, with coefficients of correlation in the testing phase within the range 0.98798–0.91024, depending on the considered model, thus demonstrating the feasibility to apply ANN modelization to predict the mechanical and performance response of the asphalt concretes investigated. Furthermore, a closed-form equation has been provided for each of the four ANN models developed, assuming as input parameters the production process, the bitumen type and content, the filler/bitumen ratio, and the volumetric properties of the mixes. Such equations allow any other researcher to predict the mechanical parameter of interest, within the framework of the present study.vi
dc.language.isoenvi
dc.publisherHindawi Limitedvi
dc.subjectLaboratoriesvi
dc.subjectConcrete mixingvi
dc.subjectFlow stabilityvi
dc.subjectNeuronsvi
dc.subjectGene expressionvi
dc.subjectGene expressionvi
dc.subjectNumerical predictionvi
dc.subjectMathematical modelsvi
dc.subjectBitumensvi
dc.titleAnalysis of the Mechanical Behaviour of Asphalt Concretes Using Artificial Neural Networksvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1038_TCCN_ Analysis of the Mechanical.pdf
  Giới hạn truy cập
Analysis of the Mechanical Behaviour of Asphalt Concretes Using Artificial Neural Networks1.26 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.