Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18411
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNgo, Loan T Q-
dc.contributor.authorWang, Yu-Ren-
dc.contributor.authorChen, Yi-Ming-
dc.date.accessioned2020-05-29T02:24:58Z-
dc.date.available2020-05-29T02:24:58Z-
dc.date.issued2018-
dc.identifier.issn1687 - 8086-
dc.identifier.otherBBKH1050-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18411-
dc.description"Hindawi Advances in Civil Engineering Volume 2018, Article ID 2451915, 11 pages https://doi.org/10.1155/2018/2451915"vi
dc.description.abstractWhen inspecting the property of material, nondestructive testing methods are more preferable than destructive testing since they do not damage the test sample. Nondestructive testing methods, however, might not yield the same accurate results in examining the property of material when compared with destructive testing. To improve the result of nondestructive testing methods, this research applies artificial neural networks and adaptive neural fuzzy inference system in predicting the concrete strength estimation using nondestructive testing method, the ultrasonic pulse velocity test. In this research, data from a total of 312 cylinder concrete samples were collected. Ultrasonic pulse velocity test was applied to those 312 samples in the lab, following the ASTM procedure. Then, the testing results of 312 samples were used to develop and validate two artificial intelligence prediction models. The research results show that artificial intelligence prediction models are more accurate than statistical regression models in terms of the mean absolute percentage error.vi
dc.language.isoenvi
dc.publisherHindawi Limitedvi
dc.subjectResearchvi
dc.subjectInternational conferencesvi
dc.subjectLaboratorieselligencevi
dc.subjectAccuracyvi
dc.subjectPredictionsvi
dc.subjectNondestructive testingvi
dc.subjectConcretevi
dc.subjectTest proceduresvi
dc.subjectRegression modelsvi
dc.subjectFuzzy logicvi
dc.titleApplying Adaptive Neural Fuzzy Inference System to Improve Concrete Strength Estimation in Ultrasonic Pulse Velocity Testsvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1050_TCCN_ Applying Adaptive Neural.pdf
  Giới hạn truy cập
Applying Adaptive Neural Fuzzy Inference System to Improve Concrete Strength Estimation in Ultrasonic Pulse Velocity Tests2.42 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.