Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18547
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Hu, Bin | - |
dc.contributor.author | Su, Guo-shao | - |
dc.contributor.author | Jiang, Jianqing | - |
dc.contributor.author | Xiao, Yilong | - |
dc.date.accessioned | 2020-05-30T06:12:57Z | - |
dc.date.available | 2020-05-30T06:12:57Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1687-8086 | - |
dc.identifier.issn | 1687-8094 (eISSN) | - |
dc.identifier.other | BBKH1269 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18547 | - |
dc.description | "Hindawi; Advances in Civil Engineering; Volume 2019, Article ID 9185756, 11 pages; https://doi.org/10.1155/2019/9185756" | vi |
dc.description.abstract | A new response surface method (RSM) for slope reliability analysis was proposed based on Gaussian process (GP) machine learning technology. The method involves the approximation of limit state function by the trained GP model and estimation of failure probability using the first-order reliability method (FORM). A small amount of training samples were firstly built by the limited equilibrium method for training the GP model. Then, the implicit limit state function of slope was approximated by the trained GP model. Thus, the implicit limit state function and its derivatives for slope stability analysis were approximated by the GP model with the explicit formulation. Furthermore, an iterative algorithm was presented to improve the precision of approximation of the limit state function at the region near the design point which contributes significantly to the failure probability. Results of four case studies including one nonslope and three slope problems indicate that the proposed method is more efficient to achieve reasonable accuracy for slope reliability analysis than the traditional RSM. | vi |
dc.language.iso | en | vi |
dc.publisher | Hindawi Limited | vi |
dc.subject | Reliability analysis | vi |
dc.subject | Standard deviation | vi |
dc.subject | Monte Carlo simulation | vi |
dc.subject | Iterative algorithms | vi |
dc.subject | Theory | vi |
dc.subject | Teaching methods | vi |
dc.subject | Mathematical analysis | vi |
dc.subject | Iterative methods | vi |
dc.subject | Artificial intelligence | vi |
dc.subject | Signal processing | vi |
dc.subject | Slope stability | vi |
dc.subject | Response surface methodology | vi |
dc.subject | Gaussian process | vi |
dc.subject | Stability analysis | vi |
dc.subject | Engineering | vi |
dc.subject | Machine learning | vi |
dc.subject | Learning | vi |
dc.subject | Training | vi |
dc.subject | Approximation | vi |
dc.title | Gaussian Process-Based Response Surface Method for Slope Reliability Analysis | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1269_TCCN_Gaussian Process-Based Response.pdf Giới hạn truy cập | Gaussian Process-Based Response Surface Method for Slope Reliability Analysis | 1.24 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.