Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18610
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Li, Shengyuan | - |
dc.contributor.author | Zhao, Xuefeng | - |
dc.date.accessioned | 2020-06-01T02:05:04Z | - |
dc.date.available | 2020-06-01T02:05:04Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1687-8086 | - |
dc.identifier.issn | 1687-8094 (eISSN) | - |
dc.identifier.other | BBKH1285 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18610 | - |
dc.description | "Hindawi; Advances in Civil Engineering; Volume 2019, Article ID 6520620, 12 pages; https://doi.org/10.1155/2019/6520620" | vi |
dc.description.abstract | Crack detection is important for the inspection and evaluation during the maintenance of concrete structures. However, conventional image-based methods need extract crack features using complex image preprocessing techniques, so it can lead to challenges when concrete surface contains various types of noise due to extensively varying real-world situations such as thin cracks, rough surface, shadows, etc. To overcome these challenges, this paper proposes an image-based crack detection method using a deep convolutional neural network (CNN). A CNN is designed through modifying AlexNet and then trained and validated using a built database with 60000 images. Through comparing validation accuracy under different base learning rates, 0.01 was chosen as the best base learning rate with the highest validation accuracy of 99.06%, and its training result is used in the following testing process. The robustness and adaptability of the trained CNN are tested on 205 images with 3120 × 4160 pixel resolutions which were not used for training and validation. The trained CNN is integrated into a smartphone application to mobile more public to detect cracks in practice. The results confirm that the proposed method can indeed detect cracks in images from real concrete surfaces. | vi |
dc.language.iso | en | vi |
dc.publisher | Hindawi Limited | vi |
dc.subject | International conferences | vi |
dc.subject | Feature extraction | vi |
dc.subject | Inspection | vi |
dc.subject | Learning | vi |
dc.subject | Architectural engineering | vi |
dc.subject | Fourier transforms | vi |
dc.subject | Smartphones | vi |
dc.subject | Artificial intelligence | vi |
dc.subject | Concrete | vi |
dc.subject | Artificial neural networks | vi |
dc.subject | Image detection | vi |
dc.subject | Concrete structures | vi |
dc.subject | Civil engineering | vi |
dc.subject | Neural networks | vi |
dc.subject | Classification | vi |
dc.subject | Flaw detection | vi |
dc.subject | Asphalt pavements | vi |
dc.subject | Methods | vi |
dc.subject | Data bases | vi |
dc.subject | Cracks | vi |
dc.title | Image-Based Concrete Crack Detection Using Convolutional Neural Network and Exhaustive Search Technique | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1285_TCCN_Image-Based Concrete Crack Detection.pdf Giới hạn truy cập | Image-Based Concrete Crack Detection Using Convolutional Neural Network and Exhaustive Search Technique | 4.65 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.