Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18703
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Ching-Yun, Kao | - |
dc.contributor.author | Chin-Hung, Shen | - |
dc.contributor.author | Jing-Chi, Jan | - |
dc.contributor.author | Shih-Lin, Hung | - |
dc.date.accessioned | 2020-06-01T08:17:03Z | - |
dc.date.available | 2020-06-01T08:17:03Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 1687 - 8086 | - |
dc.identifier.other | BBKH1093 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18703 | - |
dc.description | "Hindawi Advances in Civil Engineering Volume 2018, Article ID 4398017, 15 pages https://doi.org/10.1155/2018/4398017" | vi |
dc.description.abstract | Pozzolanic concrete has superior properties, such as high strength and workability. The precise proportioning and modeling of the concrete mixture are important when considering its applications. There have been many efforts to develop computer-aided approaches for pozzolanic concrete mix design, such as artificial neural network- (ANN-) based approaches, but these approaches have proven to be somewhat difficult in practical engineering applications. This study develops a two-step computer-aided approach for pozzolanic concrete mix design. The first step is establishing a dataset of pozzolanic concrete mixture proportioning which conforms to American Concrete Institute code, consisting of experimental data collected from the literature as well as numerical data generated by computer program. In this step, ANNs are employed to establish the prediction models of compressive strength and the slump of the concrete. Sensitivity analysis of the ANN is used to evaluate the effect of inputs on the output of the ANN. The two ANN models are tested using data of experimental specimens made in laboratory for twelve different mixtures. The second step is classifying the dataset of pozzolanic concrete mixture proportioning. A classification method is utilized to categorize the dataset into 360 classes based on compressive strength, pozzolanic admixture replacement rate, and material cost. Thus, one can easily obtain mix solutions based on these factors. The results show that the proposed computer-aided approach is convenient for pozzolanic concrete mix design and practical for engineering applications. | vi |
dc.language.iso | en | vi |
dc.publisher | Hindawi Limited | vi |
dc.subject | Concrete mixing | vi |
dc.subject | Propagation | vi |
dc.subject | Construction | vi |
dc.subject | Multivariate analysis | vi |
dc.subject | Computers | vi |
dc.subject | Design of experiments | vi |
dc.subject | Datasets | vi |
dc.subject | Classification | vi |
dc.subject | Back propagation | vi |
dc.subject | Neural networks | vi |
dc.title | A Computer-Aided Approach to Pozzolanic Concrete Mix Design | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1093_TCCN_ A Computer-Aided.pdf Giới hạn truy cập | A Computer-Aided Approach to Pozzolanic Concrete Mix Design | 1.38 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.