Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18781
Nhan đề: | Multidimensional Fragility Analysis for a NEES Frame Structure by Integrating a New Energy Damage Index: Cumulative Plastic Strain |
Tác giả: | Wang, Qiang Wu, Ziyan |
Từ khoá: | Plastic deformation Investigations Concrete Parameter sensitivity Nonlinear analysis Normal distribution Fragility Frame structures Damage assessment Seismic analysis Structural damage Mechanics Statistical analysis Earthquakes Computer simulation Structural failure Seismic response Correlation Energy dissipation Civil engineering Ductility Earthquake damage Acceleration Seismic engineering |
Năm xuất bản: | 2019 |
Nhà xuất bản: | Hindawi Limited |
Tóm tắt: | Cumulative plastic strain (CPS) damage index is proposed in this study for seismic fragility analysis by integrating the force analogy method into the energy balance equation, and CPS can be defined as the ratio of the demand of plastic dissipation energy to its capacity. The cumulative plastic strain can indicate the structural damage cumulative effect under earthquakes, which makes it especially suitable to be selected as the damage index for the structural component. Threshold values of cumulative plastic strain for different performance limit state (PLS) levels are obtained through the degree of consistency of interstory drift-based fragility curves and CPS-based fragility curves. Regarding the multidimensional fragility evaluation, CPS and the floor acceleration will be selected as the quantification indices for performance limit state of the structural component and nonstructural component, respectively. The probabilistic seismic demand model (PSDM) following multivariate logarithmic normal distribution will be developed, and taking PLS uncertainty and correlation into consideration, multidimensional PLS function is constructed to identify the structural failure domain. A full-scale 2-bay 2-story frame structure for the Network for Earthquake Engineering Simulation (NEES) project is employed as the case study structure to demonstrate the proposed theory. Nonlinear dynamic time-history analysis is carried out for the structure to obtain its maximum responses under earthquakes. Consequently, the multidimensional fragility curves can be derived on the basis of CPS. Besides, the influence of PLS threshold value, engineering demand parameter (EDP) correlation, and PLS correlation on the multidimensional fragility is investigated. Results show that (1) CPS damage index can fully consider the cumulative effect of damage under earthquakes, which makes up for the deficiency of the interstory drift damage index in this aspect, (2) the multidimensional fragility framework can deal with the PLS correlation and EDP correlation simultaneously, which will generate a more precise seismic damage assessment result, and (3) multidimensional fragility is sensitive to PLS threshold values and PLS correlation parameters. |
Mô tả: | "Hindawi; Advances in Civil Engineering; Volume 2019, Article ID 7323656, 11 pages; https://doi.org/10.1155/2019/7323656" |
Định danh: | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18781 |
ISSN: | 1687-8086 1687-8094 (eISSN) |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1381_TCCN_Multidimensional Fragility Analysis.pdf Giới hạn truy cập | Multidimensional Fragility Analysis for a NEES Frame Structure by Integrating a New Energy Damage Index: Cumulative Plastic Strain | 2.56 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.