Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18801
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Dvornik, Josip | - |
dc.contributor.author | Lazarevic, Damir | - |
dc.contributor.author | Lazarevic, Antonia Jaguljnjak | - |
dc.contributor.author | Demsic, Marija | - |
dc.date.accessioned | 2020-06-01T11:05:19Z | - |
dc.date.available | 2020-06-01T11:05:19Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1687-8086 | - |
dc.identifier.issn | 1687-8094 (eISSN) | - |
dc.identifier.other | BBKH1398 | - |
dc.identifier.uri | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/18801 | - |
dc.description | "Hindawi; Advances in Civil Engineering; Volume 2019, Article ID 7527590, 5 pages; https://doi.org/10.1155/2019/7527590" | vi |
dc.description.abstract | A simple alternative to the conjugate gradient (CG) method is presented; this method is developed as a special case of the more general iterated Ritz method (IRM) for solving a system of linear equations. This novel algorithm is not based on conjugacy; i.e., it is not necessary to maintain overall orthogonalities between various vectors from distant steps. This method is more stable than CG, and restarting techniques are not required. As in CG, only one matrix-vector multiplication is required per step with appropriate transformations. The algorithm is easily explained by energy considerations without appealing to the A-orthogonality in n-dimensional space. Finally, relaxation factor and preconditioning-like techniques can be adopted easily. | vi |
dc.language.iso | en | vi |
dc.publisher | Hindawi Limited | vi |
dc.subject | Applied mathematics | vi |
dc.subject | Mathematical analysis | vi |
dc.subject | Iterative methods | vi |
dc.subject | Matrix methods | vi |
dc.subject | Civil engineering | vi |
dc.subject | Ritz method | vi |
dc.subject | Multiplication | vi |
dc.subject | Linear equations | vi |
dc.subject | Algorithms | vi |
dc.subject | Methods | vi |
dc.subject | Energy | vi |
dc.subject | Matrix algebra | vi |
dc.subject | Mathematical problms | vi |
dc.subject | Orthogonality | vi |
dc.subject | Linear algebra | vi |
dc.subject | Preconditioning | vi |
dc.title | Nonrecursive Equivalent of the Conjugate Gradient Method without the Need to Restart | vi |
dc.type | Other | vi |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1398_TCCN_Nonrecursive Equivalent of the Conjugate.pdf Giới hạn truy cập | Nonrecursive Equivalent of the Conjugate Gradient Method without the Need to Restart | 1.13 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.