Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/19393
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorYang, Yang-
dc.contributor.authorYang, Lin-
dc.contributor.authorWu, Bo-
dc.contributor.authorYao, Gang-
dc.contributor.authorLi, Hang-
dc.contributor.authorRobert, Soltys-
dc.date.accessioned2020-06-11T09:26:04Z-
dc.date.available2020-06-11T09:26:04Z-
dc.date.issued2019-
dc.identifier.issn1687-8086-
dc.identifier.issn1687-8094 (eISSN)-
dc.identifier.otherBBKH1485-
dc.identifier.urihttp://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/19393-
dc.descriptionHindawi Advances in Civil Engineering Volume 2019, Article ID 8130240, 12 pages https://doi.org/10.1155/2019/8130240vi
dc.description.abstractThe safety condition of vehicles passing on long-span bridges has attracted more and more attention in recent years. Many researchstudieshavebeendonetofindconvenienceandefficiencymeasures.Avehiclesafetyevaluationmodelpassingonalongspanbridgeispresentedinthispaperbasedonfullyconnectedneuralnetwork(FCN).Thefirststepistoinvestigatethelong-span bridgeresponseswithwindexcitationbyusingthewindtunneltestandfiniteelementmodel.Subsequently,typicalvehiclemodels are given and a vehicle-bridge system is established by considering weather conditions. Accident types of vehicles with severe weather are estimated. In particular, the input and output variables of the vehicle safety evaluation model are determined, and simultaneously training, validation, and testing data are achieved. Twenty-nine models have been compared and analyzed by using hidden layer, initial learning rate, batch size, activation function, and optimization method. It is found that the 4-15-15-4 model occupies a preferable prediction performance, and it can provide a kind of utility for traffic control and reduce the probability of vehicle accidents on the bridge.vi
dc.language.isoenvi
dc.publisherHindawi Limited,vi
dc.subjectVehicle Safety Evaluation Model Passingvi
dc.subjectLong-Span Bridgevi
dc.subjectFully Connected Neural Networkvi
dc.subjectCivil Engineeringvi
dc.titleSafety Prediction Using Vehicle Safety Evaluation Model Passing on Long-Span Bridge with Fully Connected Neural Networkvi
dc.typeOthervi
Bộ sưu tập: Bài báo_lưu trữ

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
BBKH1485_TCCN_Safety Prediction.pdf
  Giới hạn truy cập
Safety Prediction Using Vehicle Safety Evaluation Model Passing on Long-Span Bridge with Fully Connected Neural Network2.23 MBAdobe PDFXem/Tải về  Yêu cầu tài liệu


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.