Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/20291
Nhan đề: | Space-Time Distribution Laws of Tunnel Excavation Damaged Zones (EDZs) in Deep Mines and EDZ Prediction Modeling by Random Forest Regression |
Tác giả: | Xie, Qiang Peng, Kang |
Từ khoá: | Space-Time Distribution Laws Civil Engineering Random Forest Regression Deep Mines Tunnel Excavation Damaged Zones (EDZs) EDZ Prediction Modeling |
Năm xuất bản: | 2019 |
Nhà xuất bản: | Hindawi Limited |
Tóm tắt: | The formation process of EDZs (excavation damaged zones) in the roadways of deep underground mines is complex, and this process is affected by blasting disturbances, engineering excavation unloading, and adjustment of field stress. The range of an excavation damaged zone (EDZ) changes as the time and space change. These changes bring more difficulties in analyzing the stability of the surrounding rockin deep engineering and determining a reasonable support scheme. In a layered rockmass, the distributionofEDZsismoredifficulttoidentify.Inthisstudy,anultrasonicvelocitydetectorinthesurroundingrockwasusedto monitortherangeofEDZsinadeeproadwaywhichwasburiedinalayeredrockmasswithadipangleof20–30°.Thespace-time distribution laws of the range of EDZs during the excavation process of the roadway were analyzed. The monitoring results showedthattheformationofanEDZcanbedividedintothefollowingstages:(1)theEDZformsimmediatelyaftertheroadway excavation,whichaccountsforapproximately82%–95%ofallEDZs.ThemainfactorsthataffecttheEDZaretheblastingload,the excavationunloading,andthestressadjustment (2)astheroadwayexcavationcontinues,therangeoftheEDZsincreasesbecause of the blasting excavation and stress adjustment; (3) the later excavation zone has a comparatively larger EDZ value; and (4) an asymmetric supporting technology is necessary to ensure the stability of roadways buried in layered rocks. Additionally, the predictive capability of random forest modeling is evaluated for estimating the EDZ. The root-mean-square error (RMSE) and meanabsoluteerror(MAE)areusedasreliableindicatorstovalidatethemodel.Theresultsindicatethattherandomforestmodel has good prediction capability (RMSE�0.1613 and MAE�0.1402). |
Định danh: | http://thuvienso.vanlanguni.edu.vn/handle/Vanlang_TV/20291 |
ISSN: | 1687-8086 1687-8094 (eISSN) |
Bộ sưu tập: | Bài báo_lưu trữ |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
BBKH1537_TCCN_Space-Time Distribution.pdf Giới hạn truy cập | Space-Time Distribution Laws of Tunnel Excavation Damaged Zones (EDZs) in Deep Mines and EDZ Prediction Modeling by Random Forest Regression | 1.72 MB | Adobe PDF | Xem/Tải về Yêu cầu tài liệu |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.